Download Free Solution Methods For Operator Equations Of The First Kind Book in PDF and EPUB Free Download. You can read online Solution Methods For Operator Equations Of The First Kind and write the review.

The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for `generalised' solutions, leading to the need to develop regularising algorithms. The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.). Besides the theoretical material, the book also contains a FORTRAN program library. Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn’t require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems.
Focusing on the mathematics, and providing only a minimum of explicatory comment, this volume contains six chapters covering auxiliary material, relatively p-radial operators, relatively p-sectorial operators, relatively σ-bounded operators, Cauchy problems for inhomogenous Sobolev-type equations, bounded solutions to Sobolev-type equations, and optimal control.
Equations of Mathematical Diffraction Theory focuses on the comparative analysis and development of efficient analytical methods for solving equations of mathematical diffraction theory. Following an overview of some general properties of integral and differential operators in the context of the linear theory of diffraction processes, the authors provide estimates of the operator norms for various ranges of the wave number variation, and then examine the spectral properties of these operators. They also present a new analytical method for constructing asymptotic solutions of boundary integral equations in mathematical diffraction theory for the high-frequency case. Clearly demonstrating the close connection between heuristic and rigorous methods in mathematical diffraction theory, this valuable book provides you with the differential and integral equations that can easily be used in practical applications.
This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa