Download Free Solitons In Mathematics And Physics Book in PDF and EPUB Free Download. You can read online Solitons In Mathematics And Physics and write the review.

The soliton is a dramatic concept in nonlinear science. What makes this book unique in the treatment of this subject is its focus on the properties that make the soliton physically ubiquitous and the soliton equation mathematically miraculous. Here, on the classical level, is the entity field theorists have been postulating for years: a local traveling wave pulse; a lump-like coherent structure; the solution of a field equation with remarkable stability and particle-like properties. It is a fundamental mode of propagation in gravity- driven surface and internal waves; in atmospheric waves; in ion acoustic and Langmuir waves in plasmas; in some laser waves in nonlinear media; and in many biologic contexts, such as alpha-helix proteins.
Topological solitons occur in many nonlinear classical field theories. They are stable, particle-like objects, with finite mass and a smooth structure. Examples are monopoles and Skyrmions, Ginzburg-Landau vortices and sigma-model lumps, and Yang-Mills instantons. This book is a comprehensive survey of static topological solitons and their dynamical interactions. Particular emphasis is placed on the solitons which satisfy first-order Bogomolny equations. For these, the soliton dynamics can be investigated by finding the geodesics on the moduli space of static multi-soliton solutions. Remarkable scattering processes can be understood this way. The book starts with an introduction to classical field theory, and a survey of several mathematical techniques useful for understanding many types of topological soliton. Subsequent chapters explore key examples of solitons in one, two, three and four dimensions. The final chapter discusses the unstable sphaleron solutions which exist in several field theories.
This textbook is an introduction to the theory of solitons in the physical sciences.
Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backlünd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.
Solitons were discovered by John Scott Russel in 1834, and have interested scientists and mathematicians ever since. They have been the subject of a large body of research in a wide variety of fields of physics and mathematics, not to mention engineering and other branches of science such as biology. This volume comprises the written versions of the talks presented at a workshop held at Queen's University in 1997, an interdisciplinary meeting wherein top researchers from many fields could meet, interact, and exchange ideas. Topics covered include mathematical and numerical aspects of solitons, as well as applications of solitons to nuclear and particle physics, cosmology, and condensed-matter physics. The book should be of interest to researchers in any field in which solitons are encountered.
There are two approaches in the study of differential equations of field theory. The first, finding closed-form solutions, works only for a narrow category of problems. Written by a well-known active researcher, this book focuses on the second, which is to investigate solutions using tools from modern nonlinear analysis.
Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. --
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Bäcklund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents
A 'soliton' is a localized nonlinear wave of permanent form which may interact strongly with other solitons so that when they separate after the interaction they regain their original forms. This textbook is an account of the theory of solitons and of the diverse applications of the theory to nonlinear systems arising in the physical sciences. The essence of the book is an introduction to the method of inverse scattering. Solitary waves, cnoidal waves, conservation laws, the initial-value problem for the Korteweg-de Vries equation, the Lax method, the sine-Gordon equation and Backlund transformations are treated. The book will be useful for research workers who wish to learn about solitons as well as graduate students in mathematics, physics and engineering.
A text aimed at third year undergraduates and graduates in mathematics and physics, presenting elementary twistor theory as a universal technique for solving differential equations in applied mathematics and theoretical physics.