Download Free Solitons And Particles Book in PDF and EPUB Free Download. You can read online Solitons And Particles and write the review.

This is the most up-to-date book on solitons and is divided into two parts. Part 1: Detailed introductory lectures on different aspects of solitons plus lectures on the mathematical aspects on this subject. Part 2: Is a collection of reprints on mathematical theories of solitons, solitons in field theory, solitons as particles and their properties, especially topological and physical properties. This book is aimed at a wide audience of physicists and mathematicians. It is an ideal reference book for young researchers and graduate students.
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Bäcklund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents
In this engaging book, the concept of the soliton is traced from the beginning of the last century to modern times with its recent applications.
Why writing a book about a specialized task of the large topic of complex systems? And who will read it? The answer is simple: The fascination for a didactically valuable point of view, the elegance of a closed concept and the lack of a comprehensive disquisition. The fascinating part is that field equations can have localized solutions exhibiting the typical characteristics of particles. Regarding the field equations this book focuses on, the field phenomenon of localized solutions can be described in the context of a particle formalism, which leads to a set of ordinary differential equations covering the time evolution of the position and the velocity of each particle. Moreover, starting from these particle dynamics and making the transition to many body systems, one considers typical phenomena of many body systems as shock waves and phase transitions, which themselves can be described as field phenomena. Such transitions between different level of modelling are well known from conservative systems, where localized solutions of quantum field theory lead to the mechanisms of elementary particle interaction and from this to field equations describing the properties of matter. However, in dissipative systems such transitions have not been considered yet, which is adjusted by the presented book. The elegance of a closed concept starts with the observation of self-organized current filaments in a semiconductor gas discharge system. These filaments move on random paths and exhibit certain particle features like scattering or the formation of bound states. Neither the reasons for the propagation of the filaments nor the laws of the interaction between the filaments can be registered by direct observations. Therefore a model is established, which is phenomenological in the first instance due to the complexity of the experimental system. This model allows to understand the existence of localized structures, their mechanisms of movement, and their interaction, at least, on a qualitative level. But this model is also the starting point for developing a data analysis method that enables the detection of movement and interaction mechanisms of the investigated localized solutions. The topic is rounded of by applying the data analysis to real experimental data and comparing the experimental observations to the predictions of the model. A comprehensive publication covering the interesting topic of localized solutions in reaction diffusion systems in its width and its relation to the well known phenomena of spirals and patterns does not yet exist, and this is the third reason for writing this book. Although the book focuses on a specific experimental system the model equations are as simple as possible so that the discussed methods should be adaptable to a large class of systems showing particle-like structures. Therefore, this book should attract not only the experienced scientist, who is interested in self-organization phenomena, but also the student, who would like to understand the investigation of a complex system on the basis of a continuous description.
Solitons were discovered by John Scott Russel in 1834, and have interested scientists and mathematicians ever since. They have been the subject of a large body of research in a wide variety of fields of physics and mathematics, not to mention engineering and other branches of science such as biology. This volume comprises the written versions of the talks presented at a workshop held at Queen's University in 1997, an interdisciplinary meeting wherein top researchers from many fields could meet, interact, and exchange ideas. Topics covered include mathematical and numerical aspects of solitons, as well as applications of solitons to nuclear and particle physics, cosmology, and condensed-matter physics. The book should be of interest to researchers in any field in which solitons are encountered.
"Classical solutions play an important role in quantum field theory, high-energy physics, and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for the cosmology of the early universe. Imaginarytime Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology, and related fields, this book brings the reader up to the level of current research in the field"--
Nonlinearity is a fascinating element of nature whose importance has been appreciated for many years when considering large-amplitude wave motions observed in various fields ranging from fluids and plasmas to solid-state, chemical, biological, and geological systems. Localized large-amplitude waves called solitons, which propagate without spreading and have particle-like properties, represent one of the most striking aspects of nonlinear phenomena. Although a wealth of literature on the subject, including theoretical and numerical studies, is available in good recent books and research journals, very little material has found its way into introductory texbooks and curricula. This is perhaps due to a belief that nonlinear physics is difficult and cannot be taught at an introductory level to undergraduate students and practitioners. Consequently, there is considerable interest in developing practical material suitable for students, at the lowest introductory level. This book is intended to be an elementary introduction to the physics of solitons, for students, physicists, engineers and practitioners. We present the modeling of nonlinear phenomena where soliton-like waves are involved, together with applications to a wide variety of concrete systems and experiments. This book is designed as a book of physical ideas and basic methods and not as an up-to-the minute book concerned with the latest research results. The background in physics and the amount of mathematical knowledge assumed of the reader is within that usually accumulated by junior or senior students in physics.
An overview of classical solutions and their consequences in quantum field theory, high energy physics and cosmology for graduates and researchers.