Download Free Solitons Book in PDF and EPUB Free Download. You can read online Solitons and write the review.

This textbook is an introduction to the theory of solitons in the physical sciences.
Topological solitons occur in many nonlinear classical field theories. They are stable, particle-like objects, with finite mass and a smooth structure. Examples are monopoles and Skyrmions, Ginzburg-Landau vortices and sigma-model lumps, and Yang-Mills instantons. This book is a comprehensive survey of static topological solitons and their dynamical interactions. Particular emphasis is placed on the solitons which satisfy first-order Bogomolny equations. For these, the soliton dynamics can be investigated by finding the geodesics on the moduli space of static multi-soliton solutions. Remarkable scattering processes can be understood this way. The book starts with an introduction to classical field theory, and a survey of several mathematical techniques useful for understanding many types of topological soliton. Subsequent chapters explore key examples of solitons in one, two, three and four dimensions. The final chapter discusses the unstable sphaleron solutions which exist in several field theories.
Nonlinearity is a fascinating element of nature whose importance has been appreciated for many years when considering large-amplitude wave motions observed in various fields ranging from fluids and plasmas to solid-state, chemical, biological, and geological systems. Localized large-amplitude waves called solitons, which propagate without spreading and have particle-like properties, represent one of the most striking aspects of nonlinear phenomena. Although a wealth of literature on the subject, including theoretical and numerical studies, is available in good recent books and research journals, very little material has found its way into introductory texbooks and curricula. This is perhaps due to a belief that nonlinear physics is difficult and cannot be taught at an introductory level to undergraduate students and practitioners. Consequently, there is considerable interest in developing practical material suitable for students, at the lowest introductory level. This book is intended to be an elementary introduction to the physics of solitons, for students, physicists, engineers and practitioners. We present the modeling of nonlinear phenomena where soliton-like waves are involved, together with applications to a wide variety of concrete systems and experiments. This book is designed as a book of physical ideas and basic methods and not as an up-to-the minute book concerned with the latest research results. The background in physics and the amount of mathematical knowledge assumed of the reader is within that usually accumulated by junior or senior students in physics.
This textbook gives an instructive view of solitons and their applications for advanced students of physics.
The current research into solitons and their use in fiber optic communications is very important to the future of communications. Since the advent of computer networking and high speed data transmission technology people have been striving to develop faster and more reliable communications media. Optical pulses tend to broaden over relatively short distances due to dispersion, but solitons on the other hand are not as susceptible to the effects of dispersion, and although they are subject to losses due to attenuation they can be amplified without being received and re-transmitted. This book is the first to provide a thorough overview of optical solitons. The main purpose of this book is to present the rapidly developing field of Spatial Optical Solitons starting from the basic concepts of light self-focusing and self-trapping. It will introduce the fundamental concepts of the theory of nonlinear waves and solitons in non-integrated but physically realistic models of nonlinear optics including their stability and dynamics. Also, it will summarize a number of important experimental verification of the basic theoretical predictions and concepts covering the observation of self-focusing in the earlier days of nonlinear optics and the most recent experimental results on spatial solitons, vortex solitons, and soliton interaction & spiraling. * Introduces the fundamental concepts of the theory of nonlinear waves and solitons through realistic models * Material is based on authors' years of experience actively working in and researching the field * Summarizes the most important experimental verification of the basic theories, predictions and concepts of this ever evolving field from the earliest studies to the most recent
The dominant medium for soliton propagation in electronics, nonlinear transmission line (NLTL) has found wide application as a testbed for nonlinear dynamics and KdV phenomena as well as for practical applications in ultra-sharp pulse/edge generation and novel nonlinear communication schemes in electronics. While many texts exist covering solitons in general, there is as yet no source that provides a comprehensive treatment of the soliton in the electrical domain. Drawing on the award winning research of Carnegie Mellon’s David S. Ricketts, Electrical Solitons Theory, Design, and Applications is the first text to focus specifically on KdV solitons in the nonlinear transmission line. Divided into three parts, the book begins with the foundational theory for KdV solitons, presents the core underlying mathematics of solitons, and describes the solution to the KdV equation and the basic properties of that solution, including collision behaviors and amplitude-dependent velocity. It also examines the conservation laws of the KdV for loss-less and lossy systems. The second part describes the KdV soliton in the context of the NLTL. It derives the lattice equation for solitons on the NLTL and shows the connection with the KdV equation as well as the governing equations for a lossy NLTL. Detailing the transformation between KdV theory and what we measure on the oscilloscope, the book demonstrates many of the key properties of solitons, including the inverse scattering method and soliton damping. The final part highlights practical applications such as sharp pulse formation and edge sharpening for high speed metrology as well as high frequency generation via NLTL harmonics. It describes challenges to realizing a robust soliton oscillator and the stability mechanisms necessary, and introduces three prototypes of the circular soliton oscillator using discrete and integrated platforms.
In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of non-linear and dispersive effects in the medium. In this book, the authors discuss the interactions and theoretical and experimental challenges of solitons. Topics include soliton motion of electrons and its physical properties in coupled electron-phonon systems and ionic crystals; soliton excitations and its experimental evidence in molecular crystals; shapes and dynamics of semi-discrete solitons in arrayed and stacked waveguiding systems; and more.
Approach your problems from the It isn't that they can't see the end and begin with the answers. solution. It is that they can't Then one day, perhaps you will see the problem. find the final question. G.K. Chesterton. The Scandal of 'The Hermit Clad in Crane Father Brown 'The Point of a Pin'. Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electric engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "complete integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classifica tion schemes. The draw upon widely different sections of mathematics.
The second edition of a highly successful book on nonlinear waves, solitons and chaos.