Download Free Solid State Technology Book in PDF and EPUB Free Download. You can read online Solid State Technology and write the review.

Solid-State Imaging with Charge-Coupled Devices covers the complete imaging chain: from the CCD's fundamentals to the applications. The book is divided into four main parts: the first deals with the basics of the charge-coupled devices in general. The second explains the imaging concepts in close relation to the classical television application. Part three goes into detail on new developments in the solid-state imaging world (light sensitivity, noise, device architectures), and part four rounds off the discussion with a variety of applications and the imager technology. The book is a reference work intended for all who deal with one or more aspects of solid- state imaging: the educational, scientific and industrial world. Graduates, undergraduates, engineers and technicians interested in the physics of solid-state imagers will find the answers to their imaging questions. Since each chapter concludes with a short section `Worth Memorizing', reading this short summary allows readers to continue their reading without missing the main message from the previous section.
A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding modern electronic devices and also be prepared for future developments and advancements in this far-reaching area of science and technology.
This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These problems are meant not only to review the material covered in the chapter, but also to introduce some aspects not covered in the text.An amended Solutions Manual is in preparation.
Research and development of solid state gas sensor devices began in the 1950s with several uncoordinated independent efforts. The number and pace of these investigations later accelerated in response to increasing pressure placed on the environment and public health by industrial activities. Since 1970, several thousand articles have been written on the subject, and laboratories around the globe have introduced novel methodologies and devices to address needs associated with particular technological developments. Despite the rapid development of this important new technology, very little has been done to review and coordinate data related to sensor science and technology itself. Physics, Chemistry and Technology of Solid State Gas Sensor Devices focuses on the underlying principles of solid state sensor operation and reveals the rich fabric of interdisciplinary science that governs modern sensing devices. Beginning with some historical and scientific background, the text proceeds to a study of the interactions of gases with surfaces. Subsequent chapters present detailed information on the fabrication, performance, and application of a variety of sensors. Types of sensor devices discussed include: Gas-sensitive solid state semiconductor sensors Photonic and photoacoustic gas sensors Fiber optic sensors Piezoelectric quartz crystal microbalance sensors Surface acoustic wave sensors Pyroelectric and thermal sensors For analytical chemists using solid state sensors in environment-related analysis, and for electrical engineers working with solid state sensors, this book will expand and unify their understanding of these devices, both in theory and practice.
Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. A follow-up, Solid State Lighting Reliability Part 2, was published in 2017.
Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics , bioelectronics
Comprehensive in scope, this book covers the latest progresses of theories, technologies and applications of LEDs based on III-V semiconductor materials, such as basic material physics, key device issues (homoepitaxy and heteroepitaxy of the materials on different substrates, quantum efficiency and novel structures, and more), packaging, and system integration. The authors describe the latest developments of LEDs with spectra coverage from ultra-violet (UV) to the entire visible light wavelength. The major aspects of LEDs, such as material growth, chip structure, packaging, and reliability are covered, as well as emerging and novel applications beyond the general and conventional lightings. This book, written by leading authorities in the field, is indispensable reading for researchers and students working with semiconductors, optoelectronics, and optics. Addresses novel LED applications such as LEDs for healthcare and wellbeing, horticulture, and animal breeding; Editor and chapter authors are global leading experts from the scientific and industry communities, and their latest research findings and achievements are included; Foreword by Hiroshi Amano, one of the 2014 winners of the Nobel Prize in Physics for his work on light-emitting diodes.