Download Free Solid State Proton Conductors Book in PDF and EPUB Free Download. You can read online Solid State Proton Conductors and write the review.

Proton conduction can be found in many different solid materials, from organic polymers at room temperature to inorganic oxides at high temperature. Solid state proton conductors are of central interest for many technological innovations, including hydrogen and humidity sensors, membranes for water electrolyzers and, most importantly, for high-efficiency electrochemical energy conversion in fuel cells. Focusing on fundamentals and physico-chemical properties of solid state proton conductors, topics covered include: Morphology and Structure of Solid Acids Diffusion in Solid Proton Conductors by Nuclear Magnetic Resonance Spectroscopy Structure and Diffusivity by Quasielastic Neutron Scattering Broadband Dielectric Spectroscopy Mechanical and Dynamic Mechanical Analysis of Proton-Conducting Polymers Ab initio Modeling of Transport and Structure Perfluorinated Sulfonic Acids Proton-Conducting Aromatic Polymers Inorganic Solid Proton Conductors Uniquely combining both organic (polymeric) and inorganic proton conductors, Solid State Proton Conductors: Properties and Applications in Fuel Cells provides a complete treatment of research on proton-conducting materials.
This book gives a comprehensive review of proton conductors, including theory, techniques, the materials themselves and applications.
Proton conduction can be found in many different solid materials, from organic polymers at room temperature to inorganic oxides at high temperature. Solid state proton conductors are of central interest for many technological innovations, including hydrogen and humidity sensors, membranes for water electrolyzers and, most importantly, for high-efficiency electrochemical energy conversion in fuel cells. Focusing on fundamentals and physico-chemical properties of solid state proton conductors, topics covered include: Morphology and Structure of Solid Acids Diffusion in Solid Proton Conductors by Nuclear Magnetic Resonance Spectroscopy Structure and Diffusivity by Quasielastic Neutron Scattering Broadband Dielectric Spectroscopy Mechanical and Dynamic Mechanical Analysis of Proton-Conducting Polymers Ab initio Modeling of Transport and Structure Perfluorinated Sulfonic Acids Proton-Conducting Aromatic Polymers Inorganic Solid Proton Conductors Uniquely combining both organic (polymeric) and inorganic proton conductors, Solid State Proton Conductors: Properties and Applications in Fuel Cells provides a complete treatment of research on proton-conducting materials.
The only comprehensive handbook on this important and rapidly developing topic combines fundamental information with a brief overview of recent advances in solid state electrochemistry, primarily targeting specialists working in this scientific field. Particular attention is focused on the most important developments performed during the last decade, methodological and theoretical aspects of solid state electrochemistry, as well as practical applications. The highly experienced editor has included chapters with critical reviews of theoretical approaches, experimental methods and modeling techniques, providing definitions and explaining relevant terminology as necessary. Several other chapters cover all the key groups of the ion-conducting solids important for practice, namely cationic, protonic, oxygen-anionic and mixed conductors, but also conducting polymer and hybrid materials. Finally, the whole is rounded off by brief surveys of advances in the fields of fuel cells, solid-state batteries, electrochemical sensors, and other applications of ion-conducting solids. Due to the very interdisciplinary nature of this topic, this is of great interest to material scientists, polymer chemists, physicists, and industrial scientists, too.
This book proposes a wide overview of the research and development of proton-conducting solid oxide materials. It is the first to approach the topic on proton-conducting ceramics and presents analysis studies from the fundamental to the most promising applied domains. It describes theoretical studies to enhance understanding of proton-transport mec
Solid state power sources have developed remarkably in the last three decades owing to improvements in technology and a greater understanding of the underlying basic sciences. In particular, a greater impetus has recently been placed in developing and commercializing small, lightweight, and highly energetic solid state power sources driven by demands from portable consumer electronics, medical technology, sensors, and electric vehicles. This comprehensive handbook features contributions by forerunners in the field of solid state power source technology from universities, research organizations, and industry. It is directed at the physicist, chemist, materials scientist, electrochemist, electrical engineer, science students, battery and capacitor technologists, and evaluators of present and future generations of power sources, as a reference text providing state-of-the-art reviews on solid state battery and capacitor technologies, and also insights into likely future developments in the field. The volume covers a comprehensive series of articles that deal with the fundamental aspects and experimental aspects of solid state power sources, an in-depth discussion on the state of the various technologies, and applications of these technologies. A description of the recent developments on solid state capacitor technology, and a comprehensive list of references in each and every article will help the reader with an encyclopedia of hidden information. The organization of the material has been carefully divided into thirty-one chapters to ensure that the handbook is thoroughly comprehensive and authoritative on the subject for the reader.
The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.
Presents innovative approaches towards affordable, highly efficient, and reliable sustainable energy systems Written by leading experts on the subject, this book provides not only a basic introduction and understanding of conventional fuel cell principle, but also an updated view of the most recent developments in this field. It focuses on the new energy conversion technologies based on both electrolyte and electrolyte-free fuel cells?from advanced novel ceria-based composite electrolyte low temperature solid oxide fuel cells to non-electrolyte fuel cells as advanced fuel-to-electricity conversion technology. Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices is divided into three parts. Part I covers the latest developments of anode, electrolyte, and cathode materials as well as the SOFC technologies. Part II discusses the non-electrolyte or semiconductor-based membrane fuel cells. Part III focuses on engineering efforts on materials, technology, devices and stack developments, and looks at various applications and new opportunities of SOFC using both the electrolyte and non-electrolyte principles, including integrated fuel cell systems with electrolysis, solar energy, and more. -Offers knowledge on how to realize highly efficient fuel cells with novel device structures -Shows the opportunity to transform the future fuel cell markets and the possibility to commercialize fuel cells in an extended range of applications -Presents a unique collection of contributions on the development of solid oxide fuel cells from electrolyte based to non-electrolyte-based technology -Provides a more comprehensive understanding of the advances in fuel cells and bridges the knowledge from traditional SOFC to the new concept -Allows readers to track the development from the conventional SOFC to the non-electrolyte or single-component fuel cell Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices will serve as an important reference work to students, scientists, engineers, researchers, and technology developers in the fuel cell field.
Fuel cell technology is quite promising for conversion of chemical energy of hydrocarbon fuels into electricity without forming air pollutants. There are several types of fuel cells: polymer electrolyte fuel cell (PEFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), and alkaline fuel cell (AFC). Among these, SOFCs are the most efficient and have various advantages such as flexibility in fuel, high reliability, simple balance of plant (BOP), and a long history. Therefore, SOFC technology is attracting much attention as a power plant and is now close to marketing as a combined heat and power generation system. From the beginning of SOFC development, many perovskite oxides have been used for SOFC components; for example, LaMnO -based oxide for the cathode and 3 LaCrO for the interconnect are the most well known materials for SOFCs. The 3 current SOFCs operate at temperatures higher than 1073 K. However, lowering the operating temperature of SOFCs is an important goal for further SOFC development. Reliability, durability, and stability of the SOFCs could be greatly improved by decreasing their operating temperature. In addition, a lower operating temperature is also beneficial for shortening the startup time and decreasing energy loss from heat radiation. For this purpose, faster oxide ion conductors are required to replace the conventional Y O -stabilized ZrO 2 3 2 electrolyte. A new class of electrolytes such as LaGaO is considered to be 3 highly useful for intermediate-temperature SOFCs.