Download Free Solid State Physics Literature Guides Book in PDF and EPUB Free Download. You can read online Solid State Physics Literature Guides and write the review.

"This Field Guide covers the essential topics of solid state physics, including crystal structures and dynamics, band structures, quantum structures, semiconductors, superconductors, and magnetism. Essential equations and simple diagrams convey the principles that form the core of this field."--
Keeping the mathematics to a minimum yet losing none of the required rigor, Understanding Solid State Physics, Second Edition clearly explains basic physics principles to provide a firm grounding in the subject. This new edition has been fully updated throughout, with recent developments and literature in the field, including graphene and the use of quasicrystalline materials, in addition to featuring new journalistic boxes and the reciprocal lattice. The author underscores the technological applications of the physics discussed and emphasizes the multidisciplinary nature of scientific research. After introducing students to solid state physics, the text examines the various ways in which atoms bond together to form crystalline and amorphous solids. It also describes the measurement of mechanical properties and the means by which the mechanical properties of solids can be altered or supplemented for particular applications. The author discusses how electromagnetic radiation interacts with the periodic array of atoms that make up a crystal and how solids react to heat on both atomic and macroscopic scales. She then focuses on conductors, insulators, semiconductors, and superconductors, including some basic semiconductor devices. The final chapter addresses the magnetic properties of solids as well as applications of magnets and magnetism. This accessible textbook provides a useful introduction to solid state physics for undergraduates who feel daunted by a highly mathematical approach. By relating the theories and concepts to practical applications, it shows how physics is used in the real world. Key features: Fully updated throughout, with new journalistic boxes and recent applications Uses an accessible writing style and format, offering journalistic accounts of interesting research, worked examples, self-test questions, and a helpful glossary of frequently used terms Highlights various technological applications of physics, from locomotive lights to medical scanners to USB flash drives
DIVThorough, modern study of solid state physics; solid types and symmetry, electron states, electronic properties and cooperative phenomena. /div
A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t follow all the mathematical detail. The revised edition has been carefully updated to present an up-to-date account of the essential topics and recent developments in this exciting field of physics. The coverage now includes ground-breaking materials with high relevance for applications in communication and energy, like graphene and topological insulators, as well as transparent conductors. The text assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions free to lecturers from the Wiley-VCH website. The author's webpage provides Online Notes on x-ray scattering, elastic constants, the quantum Hall effect, tight binding model, atomic magnetism, and topological insulators. This new edition includes the following updates and new features: * Expanded coverage of mechanical properties of solids, including an improved discussion of the yield stress * Crystal structure, mechanical properties, and band structure of graphene * The coverage of electronic properties of metals is expanded by a section on the quantum hall effect including exercises. New topics include the tight-binding model and an expanded discussion on Bloch waves. * With respect to semiconductors, the discussion of solar cells has been extended and improved. * Revised coverage of magnetism, with additional material on atomic magnetism * More extensive treatment of finite solids and nanostructures, now including topological insulators * Recommendations for further reading have been updated and increased. * New exercises on Hall mobility, light penetrating metals, band structure
Used widely in courses and frequently sought as a reference, this 2-volume work features comprehensive coverage of its subject. Volume 1 examines the fundamental theory of equilibrium properties of perfect crystalline solids. Volume 2 addresses non-equilibrium properties, defects, and disordered systems. 1973 edition.