Download Free Solid State Ionics For Batteries Book in PDF and EPUB Free Download. You can read online Solid State Ionics For Batteries and write the review.

In this book, recent progress in batteries is firstly reviewed by researchers in three leading Japanese battery companies, SONY, Matsushita and Sanyo, and then the future problems in battery development are stated. Then, recent development of solid state ionics for batteries, including lithium ion battery, metal-hydride battery, and fuel cells, are reviewed. A battery comprises essentially three components: positive electrode, negative electrode, and electrolyte. Each component is discussed for the construction of all-solid-state Batteries. Theoretical understanding of properties of battery materials by using molecular orbital calculations is also introduced.
Introduction to Solid State Ionics: Phenomenology and Applications presents a pedagogical, graduate-level treatment of the science and technology of superionic conductors, also known as fast ion conductors or solid electrolytes. Suitable for physics, materials science, and engineering researchers and students, the text emphasizes basic physics and
The field of solid state ionics is multidisciplinary in nature. Chemists, physicists, electrochimists, and engineers all are involved in the research and development of materials, techniques, and theoretical approaches. This science is one of the great triumphs of the second part of the 20th century. For nearly a century, development of materials for solid-state ionic technology has been restricted. During the last two decades there have been remarkable advances: more materials were discovered, modem technologies were used for characterization and optimization of ionic conduction in solids, trial and error approaches were deserted for defined predictions. During the same period fundamental theories for ion conduction in solids appeared. The large explosion of solid-state ionic material science may be considered to be due to two other influences. The first aspect is related to economy and connected with energy production, storage, and utilization. There are basic problems in industrialized countries from the economical, environmental, political, and technological points of view. The possibility of storing a large amount of utilizable energy in a comparatively small volume would make a number of non-conventional intermittent energy sources of practical convenience and cost. The second aspect is related to huge increase in international relationships between researchers and exchanges of results make considerable progress between scientists; one find many institutes joined in common search programs such as the material science networks organized by EEC in the European countries.
Defects play an important role in determining the properties of solids. This book provides an introduction to chemical bond, phonons, and thermodynamics; treatment of point defect formation and reaction, equilibria, mechanisms, and kinetics; kinetics chapters on solid state processes; and electrochemical techniques and applications. * Offers a coherent description of fundamental defect chemistry and the most common applications. * Up-to-date trends and developments within this field. * Combines electrochemical concepts with aspects of semiconductor physics.
This book highlights the state of the art in solid electrolytes, with particular emphasis on lithium garnets, electrolyte-electrode interfaces and all-solid-state batteries based on lithium garnets. Written by an international group of renowned experts, the book addresses how garnet-type solid electrolytes are contributing to the development of safe high energy density Li batteries. Unlike the flammable organic liquid electrolyte used in existing rechargeable Li batteries, garnet-type solid electrolytes are intrinsically chemically stable in contact with metallic lithium and potential positive electrodes, while offering reasonable Li conductivity. The book's respective chapters cover a broad spectrum of topics related to solid electrolytes, including interfacial engineering to resolve the electrolyte-electrode interfaces, the latest developments in the processing of thin and ultrathin lithium garnet membranes, and fabrication strategies for the high-performance solid-state batteries.This highly informative and intriguing book will appeal to postgraduate students and researchers at academic and industrial laboratories with an interest in the advancement of high energy-density lithium metal batteries
The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.
Starting out with an introduction to the fundamentals of lithium ion batteries, this book begins by describing in detail the new materials for all four major uses as cathodes, anodes, separators, and electrolytes. It then goes on to address such critical issues as self-discharge and passivation effects, highlighting lithium ion diffusion and its profound effect on a battery's power density, life cycle and safety issues. The monograph concludes with a detailed chapter on lithium ion battery use in hybrid electric vehicles. Invaluable reading for materials scientists, electrochemists, physicists, and those working in the automobile and electrotechnical industries, as well as those working in computer hardware and the semiconductor industry.
A comprehensive overview of the main characterization techniques of polymer electrolytes and their applications in electrochemical devices Polymer Electrolytes is a comprehensive and up-to-date guide to the characterization and applications of polymer electrolytes. The authors ? noted experts on the topic ? discuss the various characterization methods, including impedance spectroscopy and thermal characterization. The authors also provide information on the myriad applications of polymer electrolytes in electrochemical devices, lithium ion batteries, supercapacitors, solar cells and electrochromic windows. Over the past three decades, researchers have been developing new polymer electrolytes and assessed their application potential in electrochemical and electrical power generation, storage, and conversion systems. As a result, many new polymer electrolytes have been found, characterized, and applied in electrochemical and electrical devices. This important book: -Reviews polymer electrolytes, a key component in electrochemical power sources, and thus benefits scientists in both academia and industry -Provides an interdisciplinary resource spanning electrochemistry, physical chemistry, and energy applications -Contains detailed and comprehensive information on characterization and applications of polymer electrolytes Written for materials scientists, physical chemists, solid state chemists, electrochemists, and chemists in industry professions, Polymer Electrolytes is an essential resource that explores the key characterization techniques of polymer electrolytes and reveals how they are applied in electrochemical devices.
This book surveys state-of-the-art research on and developments in lithium-ion batteries for hybrid and electric vehicles. It summarizes their features in terms of performance, cost, service life, management, charging facilities, and safety. Vehicle electrification is now commonly accepted as a means of reducing fossil-fuels consumption and air pollution. At present, every electric vehicle on the road is powered by a lithium-ion battery. Currently, batteries based on lithium-ion technology are ranked first in terms of performance, reliability and safety. Though other systems, e.g., metal-air, lithium-sulphur, solid state, and aluminium-ion, are now being investigated, the lithium-ion system is likely to dominate for at least the next decade – which is why several manufacturers, e.g., Toyota, Nissan and Tesla, are chiefly focusing on this technology. Providing comprehensive information on lithium-ion batteries, the book includes contributions by the world’s leading experts on Li-ion batteries and vehicles.
This book describes, for the first time in a modern text, the fundamental principles on which solid state electrochemistry is based. In this sense it is in contrast to other books in the field which concentrate on a description of materials. Topics include solid (ceramic) electrolytes, glasses, polymer electrolytes, intercalation electrodes, interfaces and applications. The different nature of ionic conductivity in ceramic, glassy and polymer electrolytes is described as are the thermodynamics and kinetics of intercalation reactions. The interface between solid electrolytes and electrodes is discussed and contrasted with the more conventional liquid state electrochemistry. The text provides an essential foundation of understanding for postgraduates or others entering the field for the first time and will also be of value in advanced undergraduate courses.