Download Free Solid State Electrochemistry Ii Book in PDF and EPUB Free Download. You can read online Solid State Electrochemistry Ii and write the review.

This book describes, for the first time in a modern text, the fundamental principles on which solid state electrochemistry is based. In this sense it is in contrast to other books in the field which concentrate on a description of materials. Topics include solid (ceramic) electrolytes, glasses, polymer electrolytes, intercalation electrodes, interfaces and applications. The different nature of ionic conductivity in ceramic, glassy and polymer electrolytes is described as are the thermodynamics and kinetics of intercalation reactions. The interface between solid electrolytes and electrodes is discussed and contrasted with the more conventional liquid state electrochemistry. The text provides an essential foundation of understanding for postgraduates or others entering the field for the first time and will also be of value in advanced undergraduate courses.
The only comprehensive handbook on this important and rapidly developing topic combines fundamental information with a brief overview of recent advances in solid state electrochemistry, primarily targeting specialists working in this scientific field. Particular attention is focused on the most important developments performed during the last decade, methodological and theoretical aspects of solid state electrochemistry, as well as practical applications. The highly experienced editor has included chapters with critical reviews of theoretical approaches, experimental methods and modeling techniques, providing definitions and explaining relevant terminology as necessary. Several other chapters cover all the key groups of the ion-conducting solids important for practice, namely cationic, protonic, oxygen-anionic and mixed conductors, but also conducting polymer and hybrid materials. Finally, the whole is rounded off by brief surveys of advances in the fields of fuel cells, solid-state batteries, electrochemical sensors, and other applications of ion-conducting solids. Due to the very interdisciplinary nature of this topic, this is of great interest to material scientists, polymer chemists, physicists, and industrial scientists, too.
The ideal addition to the companion volume on fundamentals, methodologies, and applications, this second volume combines fundamental information with an overview of the role of ceramic membranes, electrodes and interfaces in this important, interdisciplinary and rapidly developing field. Written primarily for specialists working in solid state electrochemistry, this first comprehensive handbook on the topic focuses on the most important developments over the last decade, as well as the methodological and theoretical aspects and practical applications. This makes the contents equally of interest to material, physical and industrial scientists, and to physicists. Also available as a two-volume set.
This book features the essential material for any graduate or advanced undergraduate course covering solid-state electrochemistry. It provides the reader with fundamental course notes and numerous solved exercises, making it an invaluable guide and compendium for students of the subject. The book places particular emphasis on enhancing the reader's expertise and comprehension of thermodynamics, the Kröger-Vink notation, the variation in stoichiometry in ionic compounds, and of the different types of electrochemical measurements together with their technological applications. Containing almost 100 illustrations, a glossary and a bibliography, the book is particularly useful for Master and PhD students, industry engineers, university instructors, and researchers working with inorganic solids in general.
Solid-state batteries hold the promise of providing energy storage with high volumetric and gravimetric energy densities at high power densities, yet with far less safety issues relative to those associated with conventional liquid or gel-based lithium-ion batteries. Solid-state batteries are envisioned to be useful for a broad spectrum of energy storage applications, including powering automobiles and portable electronic devices, as well as stationary storage and load-leveling of renewably generated energy. This comprehensive handbook covers a wide range of topics related to solid-state batteries, including advanced enabling characterization techniques, fundamentals of solid-state systems, novel solid electrolyte systems, interfaces, cell-level studies, and three-dimensional architectures. It is directed at physicists, chemists, materials scientists, electrochemists, electrical engineers, battery technologists, and evaluators of present and future generations of power sources. This handbook serves as a reference text providing state-of-the-art reviews on solid-state battery technologies, as well as providing insights into likely future developments in the field. It is extensively annotated with comprehensive references useful to the student and practitioners in the field.
Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)
This book highlights the state of the art in solid electrolytes, with particular emphasis on lithium garnets, electrolyte-electrode interfaces and all-solid-state batteries based on lithium garnets. Written by an international group of renowned experts, the book addresses how garnet-type solid electrolytes are contributing to the development of safe high energy density Li batteries. Unlike the flammable organic liquid electrolyte used in existing rechargeable Li batteries, garnet-type solid electrolytes are intrinsically chemically stable in contact with metallic lithium and potential positive electrodes, while offering reasonable Li conductivity. The book's respective chapters cover a broad spectrum of topics related to solid electrolytes, including interfacial engineering to resolve the electrolyte-electrode interfaces, the latest developments in the processing of thin and ultrathin lithium garnet membranes, and fabrication strategies for the high-performance solid-state batteries.This highly informative and intriguing book will appeal to postgraduate students and researchers at academic and industrial laboratories with an interest in the advancement of high energy-density lithium metal batteries
A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.
Bringing together electrochemistry, condensed matter physics and quantum chemistry, this book stresses basic theoretical ideas rather than experimental methods, and modern developments rather than traditional macroscopic concepts. Its unifying approach integrates the underlying conceptual framework of statistical mechanics, quantum theory of metals, kinetics, etc with the facts of electrochemistry. This approach reveals the true nature of the subject, which touches on so many fields. Topics covered include electrochemistry, thermodynamics and electrostatics, statistical mechanics, structure of surfaces, interfaces, theories of the hydrated electron, diffusion and more.
Defects play an important role in determining the properties of solids. This book provides an introduction to chemical bond, phonons, and thermodynamics; treatment of point defect formation and reaction, equilibria, mechanisms, and kinetics; kinetics chapters on solid state processes; and electrochemical techniques and applications. * Offers a coherent description of fundamental defect chemistry and the most common applications. * Up-to-date trends and developments within this field. * Combines electrochemical concepts with aspects of semiconductor physics.