Download Free Solid State Diffusion Book in PDF and EPUB Free Download. You can read online Solid State Diffusion and write the review.

The energetics and mechanisms of diffusion control the kinetics of such diverse phenomena as the fabrication of semiconductors and superconductors, the tempering of steel, geological metamorphism, the precipitation hardening of nonferrous alloys and corrosion of metals and alloys. This work explains the fundamentals of diffusion in the solid state at a level suitable for upper-level undergraduate and beginning graduate students in materials science, metallurgy, mineralogy, and solid state physics and chemistry. A knowledge of physical chemistry such as is generally provided by a one-year undergraduate course is a prerequisite, though no detailed knowledge of solid state physics or crystallography is required.
Handbook of Solid State Diffusion, Volume 1: Diffusion Fundamentals and Techniques covers the basic fundamentals, techniques, applications, and latest developments in the area of solid-state diffusion, offering a pedagogical understanding for students, academicians, and development engineers. Both experimental techniques and computational methods find equal importance in the first of this two-volume set. Volume 1 covers the fundamentals and techniques of solid-state diffusion, beginning with a comprehensive discussion of defects, then different analyzing methods, and finally concluding with an exploration of the different types of modeling techniques. Presents a handbook with a short mathematical background and detailed examples of concrete applications of the sophisticated methods of analysis Enables readers to learn the basic concepts of experimental approaches and the computational methods involved in solid-state diffusion Covers bulk, thin film, and nanomaterials Introduces the problems and analysis in important materials systems in various applications Collates contributions from academic and industrial problems from leading scientists involved in developing key concepts across the globe
Handbook of Solid State Diffusion, Volume 2: Diffusion Analysis in Material Applications covers the basic fundamentals, techniques, applications, and latest developments in the area of solid-state diffusion, offering a pedagogical understanding for students, academicians, and development engineers. Both experimental techniques and computational methods find equal importance in the second of this two volume set. Volume 2 covers practical issues on diffusion phenomena in bulk, thin film, and in nanomaterials. Diffusion related problems and analysis of methods in industrial applications, such as electronic industry, high temperature materials, nuclear materials, and superconductor materials are discussed. Presents a handbook with a short mathematical background and detailed examples of concrete applications of the sophisticated methods of analysis Enables readers to learn the basic concepts of experimental approaches and the computational methods involved in solid-state diffusion Covers bulk, thin film, and nanomaterials Introduces the problems and analysis in important materials systems in various applications Collates contributions from academic and industrial problems from leading scientists involved in developing key concepts across the globe
This book describes the central aspects of diffusion in solids, and goes on to provide easy access to important information about diffusion in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Coverage includes diffusion-controlled phenomena including ionic conduction, grain-boundary and dislocation pipe diffusion. This book will benefit graduate students in such disciplines as solid-state physics, physical metallurgy, materials science, and geophysics, as well as scientists in academic and industrial research laboratories.
This book offers a modern treatment of diffusion in solids, covering such core topics as the transport of mass through the lattice of a crystalline solid. Part I of the book develops basic concepts in diffusion field theory and illustrates them with several applications, while Part II focuses on key solid-state principles needed to apply diffusion theory to real materials.
Volume is indexed by Thomson Reuters BCI (WoS). This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate layer at the Al–Zr interface under isothermal conditions. The physico-chemical approach predicts that, in most cases, the number of compound layers should not exceed two; with the main factor, resulting in the appearance of additional layers, being crack formation due to thermal expansion and volume effects.
In this book basic and some more advanced thermodynamics and phase as well as stability diagrams relevant for diffusion studies are introduced. Following, Fick’s laws of diffusion, atomic mechanisms, interdiffusion, intrinsic diffusion, tracer diffusion and the Kirkendall effect are discussed. Short circuit diffusion is explained in detail with an emphasis on grain boundary diffusion. Recent advances in the area of interdiffusion will be introduced. Interdiffusion in multi-component systems is also explained. Many practical examples will be given, such that researches working in this area can learn the practical evaluation of various diffusion parameters from experimental results. Large number of illustrations and experimental results are used to explain the subject. This book will be appealing for students, academicians, engineers and researchers in academic institutions, industry research and development laboratories.
Written by an outstanding group of applied theoreticians with comprehensive expertise and a wide spectrum of international contacts headed by Prof. A. M. Gusak, this monograph coherently presents the approaches and results hitherto only available in various journal papers. A must-have for all those involved with the public or corporate science of nano systems, thin films and electrical engineering.