Download Free Soils And Pulses Book in PDF and EPUB Free Download. You can read online Soils And Pulses and write the review.

This booklet aims to introduce the reader to the importance of preserving our soil resources by attending to the reciprocal relationship between soils and pulses. The ecosystem services provided by soil are presented together with the role of pulses in improving soil health, adapting to and mitigating climate change, and ultimately contributing to food security and nutrition. The book also discusses the role of pulses in restoring degraded soils and their contribution to pursuing the practice of sustainable soil management.
Pulses have a long history in sub-Saharan Africa due to their multiple benefits. Pulses, and legumes in general, can play an important role in agriculture because of their ability to biologically fix atmospheric nitrogen and to enhance the biological turnover of phosphorus; thus they could become the cornerstone of sustainable agriculture in Africa. In this sense, there is a body of literature that points to diversification of existing production systems – particularly legumes species, which provide critical environmental services, including soil erosion control and soil nutrient recapitalization. This publication is a review of some of the promising strategies to support the cultivation and utilization of pulses on smallholder farms in sub-Saharan Africa. The review is part of the legacy of the International Year of Pulses (IYP), which sought to recognize the contribution that pulses make to human well-being and the environment.
Sustainable management of soils is an important global issue of the 21st century. Feeding roughly 8 billion people with an environmentally sustainable production system is a major challenge, especially considering the fact that 10% of the world’s population at risk of hunger and 25% at risk of malnutrition. Accordingly, the 68th United Nations (UN) general assembly declared 2016 the “International Year of Pulses” to raise awareness and to celebrate the role of pulses in human nutrition and welfare. Likewise, the assembly declared the year 2015 as the “International Year of Soils” to promote awareness of the role of “healthy soils for a healthy life” and the International Union of Soil Science (IUSS) has declared 2015-2024 as the International Decade of Soils. Including legumes in cropping systems is an important toward advancing soil sustainability, food and nutritional security without compromising soil quality or its production potential. Several textbooks and edited volumes are currently available on general soil fertility or on legumes but‚ to date‚ none have been dedicated to the study of “Legumes for Soil Health and Sustainable Management”. This is important aspect, as the soil, the epidermis of the Earth (geoderma)‚ is the major component of the terrestrial biosphere. This book explores the impacts of legumes on soil health and sustainability, structure and functioning of agro-ecosystems, agronomic productivity and food security, BNF, microbial transformation of soil N and P, plant-growth-promoting rhizobacteria, biofertilizers, etc. With the advent of fertilizers, legumes have been sidelined since World War II, which has produced serious consequences for soils and the environment alike. Therefore, legume-based rational cropping/soil management practices must support environmentally and economically sustainable agroecosystems based on (sequential) rotation and intercropping considerations to restore soil health and sustainability. All chapters are amply illustrated with appropriately placed data, tables, figures, and photographs, and supported with extensive and cutting-edge references. The editors have provided a roadmap for the sustainable development of legumes for food and nutritional security and soil sustainability in agricultural systems, offering a unique resource for teachers, researchers, and policymakers, as well as undergraduate and graduate students of soil science, agronomy, ecology, and the environmental sciences.
Doctoral Thesis / Dissertation from the year 2016 in the subject Geography / Earth Science - Geology, Mineralogy, Soil Science, grade: 9.0, Tamil Nadu Agricultural University (Agriculture College and Research Institute, Madurai), course: Soil Science & Agricultural Chemistry, language: English, abstract: The study has been contemplated to evaluate the sources and levels of sulphur for maximizing the productivity of blackgram in Madurai district, Tamil Nadu in the following objectives: To delineate sulphur status of soils of pulses growing areas in Madurai district, to study the release pattern of different sulphur sources through laboratory incubation, to study the adsorption and desorption behavior of sulphur in various soil types and to evaluate the effect of different sources of sulphur on yield, nutrient uptake and quality of blackgram. Pulses are the second most important group of crops after cereals. India is producing 14.76 million tons of pulses from an area of 23.63 million hectare, which is one of the largest pulses producing countries in the world. India accounts for 33 per cent of the world area and 22 per cent of the world production of pulses.Despite India being the largest producer (18.5 million tons) and processor of pulses in the world also imports around 3.5 million tons annually on an average to meet its ever increasing consumption needs of around 22.0 million tons. According to Indian Institute of Pulses Research’s Vision document, India’s population is expected to touch 1.68 billion by 2030 and the pulse requirement for the year 2030 is projected at 32 million tons with anticipated required annual growth rate of 4.2 per cent. However, about 2-3 million tons of pulses are imported annually to meet the domestic consumption requirement.
The aim of raising global awareness on the multitude of benefits of pulses was integral to the International Year of Pulses. This coffee table book is part guide and part cookbook— informative without being technical. The book begins by giving an overview of pulses, and explains why they are an important food for the future. It also has more than 30 recipes prepared by some of the most prestigious chefs in the world and is peppered with infographics. Part I gives an overview of pulses and gives a brief guide to the main varieties in the world. Part II explains step-by-step how to cook them, what to keep in mind and what condiments and instruments to use. Part III underscores the five messages that FAO conveys to the world about the impact pulses have on nutrition, health, climate change, biodiversity and food security. Part IV illustrates how pulses can be grown in a garden patch with easy gardening instructions and how they are grown in the world, highlighting major world producers, importers and exporters. Part V takes the reader on a journey around the world showing how pulses fit a region’s history and culture and visits 10 internationally acclaimed chefs as they go the market to buy pulses. Back at their restaurant or home, each chef prepares easy dishes and gives their best kept secrets. Each chef provides 3 recipes that are beautifully illustrated.
This thoughtful and provocative book provides a concise, up-to-date presentation of how current and projected future phosphorus scarcity will affect legume growth and their symbiotic nitrogen-fixing capabilities. It is a timely examination of the physiological and molecular responses of nodules to phosphorous deficiency in attempt to identify common principles. Students and researchers in the many disciplines related to crop productivity will find this title an exciting contribution in the area of plant stress physiology. The knowledge in this volume can also aid plant breeders, particularly through new methods of genetic engineering, in developing unique and adaptive cultivars with higher symbiotic efficiency. The awareness of the rapidly rising world population must translate into a parallel increase in agricultural production in order to sustain the growing population both now and in the future. Hence, the demand for food crops to produce proteins and vegetable oil for human consumption is going to increase considerably during the coming years. The essential role of legumes in agriculture is well-recognized, given the abundant levels of proteins and oils found in plants along with their enormous contribution to the sustainability of agricultural systems and human health. The capacity of legumes to fix nitrogen (N2) in partnership with rhizobia provides an input-saving and resource-conserving alternative, thereby reducing the need for chemical fertilizers while enhancing overall crop productivity. The use of N2-fixing legumes to produce plant proteins results in a substantial decrease in the consumption of fossil fuels and therefore also in the agricultural effects to global warming. However, a major constraint to legume production is low soil phosphorus (P) availability, considering that an overwhelming majority of the world’s soils are classified as P-deficient. Low-P availability is especially problematic for legumes, since legume nodules responsible for N2 fixation have a high P requirement. Therefore, this book explains how nodule N2 fixation responds to low P availability, which is crucial for improving legume production and maintaining agricultural sustainability in the context of the global P crisis.