Download Free Soil Nitrogen Ecology Book in PDF and EPUB Free Download. You can read online Soil Nitrogen Ecology and write the review.

This book highlights the latest discoveries about the nitrogen cycle in the soil. It introduces the concept of nitrogen fixation and covers important aspects of nitrogen in soil and ecology such as its distribution and occurrence, soil microflora and fauna and their role in N-fixation. The importance of plant growth-promoting microbes for a sustainable agriculture, e.g. arbuscular mycorrhizae in N-fixation, is discussed as well as perspectives of metagenomics, microbe-plant signal transduction in N-ecology and related aspects. This book enables the reader to bridge the main gaps in knowledge and carefully presents perspectives on the ecology of biotransformations of nitrogen in soil.
Nitrogen (N) is potentially one of the most complex elements on the Earth. It is necessary for all biological activity, but creates negative impacts on water and air quality. There is a balancing act between deficiency and surplus and the forms of N available further complicate our understanding of the dynamics. Biological fixation provides some plants with N supply while others are totally dependent upon N being available in the soil profile for the roots to extract. Nevertheless, the demand for N will increase because the human population with its increasing growth requires more protein and thus more N. Understanding the global N cycle is imperative to meeting current and future nitrogen demands while decreasing environmental impacts. This book discusses availability, production, and recycling of N in air, water, plants, and soils. It features information on N impacts to soil and water quality, management of N in agroecosystems, and techniques to maximize the use efficiency while minimizing the risks of leakage of reactive N into the environment. This volume in the Advances in Soil Science series is specifically devoted to availability, production, and recycling of N with impact on climate change and water quality, and management of N in agroecosystems in the context of maximizing the use efficiency and minimizing the risks of leakage of reactive N (NO-3, N¬2O) into the environment.
The fourth edition of Soil Microbiology, Ecology and Biochemistry updates this widely used reference as the study and understanding of soil biota, their function, and the dynamics of soil organic matter has been revolutionized by molecular and instrumental techniques, and information technology. Knowledge of soil microbiology, ecology and biochemistry is central to our understanding of organisms and their processes and interactions with their environment. In a time of great global change and increased emphasis on biodiversity and food security, soil microbiology and ecology has become an increasingly important topic. Revised by a group of world-renowned authors in many institutions and disciplines, this work relates the breakthroughs in knowledge in this important field to its history as well as future applications. The new edition provides readable, practical, impactful information for its many applied and fundamental disciplines. Professionals turn to this text as a reference for fundamental knowledge in their field or to inform management practices. - New section on "Methods in Studying Soil Organic Matter Formation and Nutrient Dynamics" to balance the two successful chapters on microbial and physiological methodology - Includes expanded information on soil interactions with organisms involved in human and plant disease - Improved readability and integration for an ever-widening audience in his field - Integrated concepts related to soil biota, diversity, and function allow readers in multiple disciplines to understand the complex soil biota and their function
Describes the organisms inhabiting the soil, their functions and interactions and the dimensions of human impact on the activity of soil organisms and soil ecological function; and discusses basic soil characteristics and biogeochemical cycling, key soil flora and fauna, community-level dynamics (soil food webs) and the ecological and pedological functions of soil organisms. Also conveys an understanding of how human activities impact upon soil ecology in a section on ecosystem management and its effects on soil biota.
This study examines the interactions between nitrogen and the ecosystem and discusses nitrogen fertilization practices around the world. Simulation models that play an important role in determining the dynamics of source-sink relationships are presented, helping to pinpoint inefficiencies and develop strategies to synchronize nitrogen supply and demand.
Presenting the first continental-scale assessment of reactive nitrogen in the environment, this book sets the related environmental problems in context by providing a multidisciplinary introduction to the nitrogen cycle processes. Issues of upscaling from farm plot and city to national and continental scales are addressed in detail with emphasis on opportunities for better management at local to global levels. The five key societal threats posed by reactive nitrogen are assessed, providing a framework for joined-up management of the nitrogen cycle in Europe, including the first cost-benefit analysis for different reactive nitrogen forms and future scenarios. Incorporating comprehensive maps, a handy technical synopsis and a summary for policy makers, this landmark volume is an essential reference for academic researchers across a wide range of disciplines, as well as stakeholders and policy makers. It is also a valuable tool in communicating the key environmental issues and future challenges to the wider public.
Sustainability has a major part to play in the global challenge of continued development of regions, countries, and continents all around the World and biological nitrogen fixation has a key role in this process. This volume begins with chapters specifically addressing crops of major global importance, such as soybeans, rice, and sugar cane. It continues with a second important focus, agroforestry, and describes the use and promise of both legume trees with their rhizobial symbionts and other nitrogen-fixing trees with their actinorhizal colonization. An over-arching theme of all chapters is the interaction of the plants and trees with microbes and this theme allows other aspects of soil microbiology, such as interactions with arbuscular mycorrhizal fungi and the impact of soil-stress factors on biological nitrogen fixation, to be addressed. Furthermore, a link to basic science occurs through the inclusion of chapters describing the biogeochemically important nitrogen cycle and its key relationships among nitrogen fixation, nitrification, and denitrification. The volume then provides an up-to-date view of the production of microbial inocula, especially those for legume crops.
Long-awaited second edition of classic textbook, brought completely up to date, for courses on tropical soils, and reference for scientists and professionals.
Nitrogen is a key element in ecosystem processes. Aspects of local and global changes in nitrogen in both undisturbed and disturbed conditions are discussed. Environmental changes caused by pollution from nitrogenous compounds and changes in landuse are also described. Organisms, plants, animals and microorganisms are all affecting nitrogen supply. Emphasis is placed on natural and anthropogenic transfer of nitrogen between ecosystems and also on the interaction of nitrogen with other bioelements.