Download Free Soil Moisture And Drought Monitoring Using Remote Sensing Book in PDF and EPUB Free Download. You can read online Soil Moisture And Drought Monitoring Using Remote Sensing and write the review.

Remote Sensing of Drought: Innovative Monitoring Approaches presents emerging remote sensing-based tools and techniques that can be applied to operational drought monitoring and early warning around the world. The first book to focus on remote sensing and drought monitoring, it brings together a wealth of information that has been scattered throughout the literature and across many disciplines. Featuring contributions by leading scientists, it assembles a cross-section of globally applicable techniques that are currently operational or have potential to be operational in the near future. The book explores a range of applications for monitoring four critical components of the hydrological cycle related to drought: vegetation health, evapotranspiration, soil moisture and groundwater, and precipitation. These applications use remotely sensed optical, thermal, microwave, radar, and gravity data from instruments such as AMSR-E, GOES, GRACE, MERIS, MODIS, and Landsat and implement several advanced modeling and data assimilation techniques. Examples show how to integrate this information into routine drought products. The book also examines the role of satellite remote sensing within traditional drought monitoring, as well as current challenges and future prospects. Improving drought monitoring is becoming increasingly important in addressing a wide range of societal issues, from food security and water scarcity to human health, ecosystem services, and energy production. This unique book surveys innovative remote sensing approaches to provide you with new perspectives on large-area drought monitoring and early warning.
Remote Sensing of Drought: Innovative Monitoring Approaches presents emerging remote sensing-based tools and techniques that can be applied to operational drought monitoring and early warning around the world. The first book to focus on remote sensing and drought monitoring, it brings together a wealth of information that has been scattered through
This volume provides in-depth coverage of the latest in remote sensing of hydrological extremes: both floods and droughts. The book is divided into two distinct sections – floods and droughts – and offers a variety of techniques for monitoring each. With rapid advances in computer modelling and observing systems, floods and droughts are studied with greater precision today than ever before. Land surface models, especially over the entire Continental United States, can map the hydrological cycle at kilometre and sub-kilometre scales. In the case of smaller areas there is even higher spatial resolution and the only limiting factor is the resolution of input data. In-situ sensors are automated and the data is directly relayed to the world wide web for many hydrological variables such as precipitation, soil moisture, surface temperature and heat fluxes. In addition, satellite remote sensing has advanced to providing twice a day repeat observations at kilometre to ten-kilometre spatial scales. We are at a critical juncture in the study of hydrological extremes, and the GPM and SMAP missions as well as the MODIS and GRACE sensors give us more tools and data than were ever available before. A global variety of chapter authors provides wide-ranging perspectives and case studies that will make this book an indispensable resource for researchers, engineers, and even emergency management and insurance professionals who study and/or manage hydrological extremes.
Drought is the most complex and least understood of all natural hazards, affecting more people than any other hazard. Soil moisture is a primary indicator for agricultural drought. This dissertation is aimed at evaluating and investigating soil moisture and drought monitoring using remote sensing techniques. Recent technological advances in remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques, each with its own strengths and weaknesses. This research is designed to combine the strengths of optical/infrared as well as microwave remote sensing approaches for soil moisture estimation. A soil moisture estimation algorithm at moderate resolution was developed based on the well known "Universal Triangle" relation by using MODIS land parameters as well as ground measured soil moisture. Though lower in spatial resolution, AMSR-E microwave measurements provides daily global soil moisture of the top soil layer, which are typically less affected by clouds, making them complementary to MODIS measurements over regions of clouds. Considering that the "Universal Triangle" approach for soil moisture estimation is based on empirical relations which lack solid physical basis, a new physics based drought index, the Normalized Multi-band Drought Index (NMDI) was proposed for monitoring soil and vegetation moisture from space by using one near-infrared (NIR) and two shortwave infrared (SWIR) channels. Typical soil reflectance spectra and satellite acquired canopy reflectances are used to validate the usefulness of NMDI. Its ability for active fire detection has also been investigated using forest fires burning in southern Georgia, USA and southern Greece in 2007. Combining information from multiple NIR and SWIR channels makes NMDI a most promising indicator for drought monitoring and active fire detecting. Given the current technology, satellite remote sensing can only provide soil moisture measurements for the top soil profile, and these near-surface soil moisture must be related to the complete soil moisture profile in the unsaturated zone in order to be useful for hydrologic, climatic and agricultural studies. A new numerical method was presented to solve the governing equation for water transport in unsaturated soil by matching physical and numerical diffusion. By applying a new numerical scheme with which to discrete the kinematic wave equation on the space-time plane, this method shows the capability to simulate the physical diffusion of the diffusive wave with the numerical diffusion generated in the difference solution under certain conditions. Compared with other numerical methods with the first-order finite differences scheme, this method has enhanced the solution precision to the second order. An example application shows a good agreement with the observed data and suggests this new approach can be appropriate for soil moisture profile estimation. By combining the proposed soil moisture and drought estimation techniques, the daily soil moisture profile at high resolution can be gained, and is thus expected to be helpful not only in drought monitoring and active fire detecting, but also in agricultural applications and climate studies
Recent advances in the modeling and remote sensing of droughts and floods Droughts and floods are causing increasing damage worldwide, often with devastating short- and long-term impacts on human society. Forecasting when they will occur, monitoring them as they develop, and learning from the past to improve disaster management is vital. Global Drought and Flood: Observation, Modeling, and Prediction presents recent advances in the modeling and remote sensing of droughts and floods. It also describes the techniques and products currently available and how they are being used in practice. Volume highlights include: Remote sensing approaches for mapping droughts and floods Physical and statistical models for monitoring and forecasting hydrologic hazards Features of various drought and flood systems and products Use by governments, humanitarian, and development stakeholders in recent disaster cases Improving the collaboration between hazard information provision and end users The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Information-based decision-making during drought, often brings out some of the excellent practices that are prevalent in society / individuals. This book is designed to provide information on the drought process, meteorological, hydrological, agriculture, socio-economic aspects and available technologies such as satellite remote sensing data analysis and Geographical Information system for assessment. Assessment procedures utilising the various parameters of importance from various sources for micro level management that would enhance the effectiveness of management practice are dealt in detail. Resource availability and affected group determine the relief assistance for the present event and information that would help them in their realisation and preparedness for the forthcoming years by select countries is highlighted. This would help in the formulation of schemes for event mitigation and area development plans. The readers would gain complete knowledge on drought. This book is expected to act as a guide in preparing people as effective natural resource utilizationist under drought situations.
Basic concepts and drought analysis. Remote sensing. NOAA/AVHRR satellite data-based indices for monitoring agricultural droughts. The Americas. Europe, Russia, and the near east. Asia and Australia. International efforts and climate change.
This report describes the development of the near real-time drought monitoring and reporting system for the region, which currently includes Afghanistan, Pakistan and western parts of India. The system is based on drought-related indices derived from high-resolution remote-sensing data (MODIS). The unique feature of the study is the development of regression relationships between drought-related indices obtained from MODIS and AVHRR data, which have different pixel-resolution and optical characteristics. The goal is to make the system available, via Internet, to all stakeholders in the region.
Accurate and detailed soil moisture estimates can critically shape cross-sectoral water resources decision-making. From local to regional scales, monitoring of agricultural water demands, droughts, floods, landslides, and wildfires can benefit from high-resolution soil moisture information. However, soil moisture highly varies in space and time, and as a result, it is challenging to obtain detailed information at the stakeholder-relevant spatial scales. This dissertation leverages advances in satellite remote sensing, hyper-resolution land surface modeling, high-performance computing, and machine learning to bridge this data gap. Chapter 2 introduces a novel cluster-based Bayesian merging scheme that combines NASA's SMAP satellite observations and hyper-resolution land surface modeling for obtaining satellite-based surface soil moisture retrievals at an unprecedented 30-m spatial resolution. This approach's scalability and accuracy are demonstrated in Chapter 3 by introducing SMAP-HydroBlocks, the first satellite-based surface soil moisture dataset at a 30-m resolution over the United States (2015-2019). Using this dataset, Chapter 4 assesses the multi-scale properties of soil moisture spatial variability and the persistence of this variability across spatial scales. This analysis maps where detailed information is critical for solving water, energy, and carbon scale-dependent processes and how much variability is lost when data is only available at coarse spatial scales. Using machine learning, Chapter 5 demonstrates the value of high-resolution soil moisture for drought monitoring and crop yield prediction at farmer's field scales (250-m resolution). This dissertation provides a novel pathway towards global monitoring of water resources' dynamics at locally relevant spatial scales.