Download Free Soil Erosion By Water Book in PDF and EPUB Free Download. You can read online Soil Erosion By Water and write the review.

“Principles of Soil Management and Conservation” comprehensively reviews the state-of-knowledge on soil erosion and management. It discusses in detail soil conservation topics in relation to soil productivity, environment quality, and agronomic production. It addresses the implications of soil erosion with emphasis on global hotspots and synthesizes available from developed and developing countries. It also critically reviews information on no-till management, organic farming, crop residue management for industrial uses, conservation buffers (e.g., grass buffers, agroforestry systems), and the problem of hypoxia in the Gulf of Mexico and in other regions. This book uniquely addresses the global issues including carbon sequestration, net emissions of CO2, and erosion as a sink or source of C under different scenarios of soil management. It also deliberates the implications of the projected global warming on soil erosion and vice versa. The concern about global food security in relation to soil erosion and strategies for confronting the remaining problems in soil management and conservation are specifically addressed. This volume is suitable for both undergraduate and graduate students interested in understanding the principles of soil conservation and management. The book is also useful for practitioners, extension agents, soil conservationists, and policymakers as an important reference material.
Discusses the latest information regarding the processes and mechanisms responsible for runoff and erosion by water in arable lands--detailing state-of-the-art water and soil conservation methods. Elucidates the rehabilitation of agricultural lands depleted by human activity.
In view of the grave consequences of soil degradation on ecosystem functions, food security, biodiversity and human health, this book covers the extent, causes, processes and impacts of global soil degradation, and processes for improvement of degraded soils. Soil conservation measures, including soil amendments, decompaction, mulching, cover cropping, crop rotation, green manuring, contour farming, strip cropping, alley cropping, surface roughening, windbreaks, terracing, sloping agricultural land technology (SALT), dune stabilization, etc., are discussed. Particular emphasis is given to soil pollution and the methods of physical, chemical and biological remediation of polluted soils. This book will lead the reader from the basics to a comprehensive understanding of soil degradation, conservation and remediation.
Despite almost a century of research and extension efforts, soil erosion by water, wind and tillage continues to be the greatest threat to soil health and soil ecosystem services in many regions of the world. Our understanding of the physical processes of erosion and the controls on those processes has been firmly established. Nevertheless, some elements remain controversial. It is often these controversial questions that hamper efforts to implement sound erosion control measures in many areas of the world. This book, released in the framework of the Global Symposium on Soil Erosion (15-17 May 2019) reviews the state-of-the-art information related to all topics related to soil erosion.
Provides a unique and comprehensive assessment of soil erosion throughout Europe, an important aspect to control and manage if landscapes are to be sustained for the future. Written in two parts, Soil Erosion in Europe primarily focuses on current issues, area specific soil erosion rates, on and off-site impacts, government responses, soil conservation measures, and soil erosion risk maps. The first part overviews the erosion processes and the problems encountered within each European country, whilst the second section takes a cross-cutting theme approach. Based on an EU-funded project that has been running for four years with erosion scientists from 19 countries Reviews contemporary erosion processes and rates on arable and rangeland in Europe Looks at current issues, such as socio-economic drivers, controlling factors specific to the country and changes in land use
Dirt, soil, call it what you want—it's everywhere we go. It is the root of our existence, supporting our feet, our farms, our cities. This fascinating yet disquieting book finds, however, that we are running out of dirt, and it's no laughing matter. An engaging natural and cultural history of soil that sweeps from ancient civilizations to modern times, Dirt: The Erosion of Civilizations explores the compelling idea that we are—and have long been—using up Earth's soil. Once bare of protective vegetation and exposed to wind and rain, cultivated soils erode bit by bit, slowly enough to be ignored in a single lifetime but fast enough over centuries to limit the lifespan of civilizations. A rich mix of history, archaeology and geology, Dirt traces the role of soil use and abuse in the history of Mesopotamia, Ancient Greece, the Roman Empire, China, European colonialism, Central America, and the American push westward. We see how soil has shaped us and we have shaped soil—as society after society has risen, prospered, and plowed through a natural endowment of fertile dirt. David R. Montgomery sees in the recent rise of organic and no-till farming the hope for a new agricultural revolution that might help us avoid the fate of previous civilizations.
Introduction and history; Rainfall-runoff erosivity factor (R); Soil erodibility factor (K); Slope length and steepness factors (LS); Cover-management factor (C); Support practice factor (P); RUSLE user guide; Coversion to SI metric system; Calculation of EI from recording-raingage records; Estimating random roughness in the field; Parameter values for major agricultural crops and tillage operations.
TO THE MODEL EVALUATION 1. MODELLING SOIL EROSION BY WATER l 2 John Boardman and David Favis-Mortlock 1 School of Geography and Environmental Change Unit Mansfield Road University of Oxford Oxford OX1 3TB UK 2 Environmental Change Unit University of Oxford 5 South Parks Road Oxford OX1 3UB UK Introduction This volume is the Proceedings of the NATO Advanced Research Workshop 'Global Change: Modelling Soil Erosion by Water', which was held on II-14th September 1995, at the University of Oxford, UK. The meeting was also one of a series organised by the IGBP 1 GCTE Soil Erosion Network, which is a component of GCTE's Land Degradation Task (3.3.2) (Ingram et aI., 1996; Valentin, this volume). One aim of the GCTE Soil Erosion Network is to evaluate the suitability of existing soil erosion models for predicting the possible impacts of global change upon soil erosion. Due to the wide range of erosion models currently, in use or under development, it was decided to evaluate models in the following sequence Favis-Mortlock et al., 1996): • field-scale water erosion models • catchmenr-scale water erosion models • wind erosion models • models with a landscape-scale and larger focus. As part of this strategy, the first stage of the GCTE validation of field-scale erosion models was carried out at the Oxford NATO-ARW. I A list of Acronyms fonns Appendix A.