Download Free Soil Compaction In Crop Production Book in PDF and EPUB Free Download. You can read online Soil Compaction In Crop Production and write the review.

This book provides a global review of the mechanisms, incidence and control measures related to the problems of soil compaction in agriculture, forestry and other cropping systems. Among the disciplines which relate to this subject are soil physics, soil mechanics, vehicle mechanics, agricultural engineering, plant physiology, agronomy, pedology, climatology and economics. The volume will be of great value to soil scientists, agricultural engineers, and all those involved with irrigation, drainage and tillage. It will help to facilitate the exchange of information on current work throughout the world, as well as to promote scientific understanding and stimulate the development, evaluation and adoption of practical solutions to these widespread and urgent problems.
The soil compaction process; Methods of measuring soil compaction; Forces causing soil compaction; Compaction as it affects soil conditions; Soil conditions as they affect plant establishment, root development and yield; Effect of tillage on soil compaction; Management factors and natural forces as related to compaction; Economic assessment of soil compaction.
The purpose of Advances in Soil Science is to provide a forum for leading scientists to analyze and summarize the available scientific information on a subject, assessing its importance and identifying additional research needs. A wide array of subjects has been addressed by authors from many countries in the initial ten volumes of the series. The quick acceptance of the series by both authors and readers has been very gratifying and confirms our perception that a need did exist for a medium to fill the gap between the scientific journals and the comprehensive reference books. This volume is the first of the series devoted entirely to a single topic soil degradation. Future volumes will include both single-topic volumes as well as volumes containing reviews of different topics of soil science, as in the case of the first ten volumes. There are increasing concern and attention about managing natural re sources, particularly soil and water. Soil degradation is clearly one of the most pressing problems facing mankind. Although the spotlight regarding soil degradation in recent years has focused on Africa, concern about the degradation of soil and water resources is worldwide. The widespread con cern about global environmental change is also being linked to severe problems of soil degradation. Therefore, we are indeed pleased that the first volume of the series devoted to a single topic addresses such an impor tant issue. The current volume is also the first of the series involving a guest editor.
"'Published by the Sustainable Agriculture Research and Education (SARE) program, with funding from the National Institute of Food and Agriculture, U.S. Department of Agriculture."
Soil compaction reduces rooting, infiltration, water storage, aeration, drainage, and crop growth. Soil compaction has been studied intensively for more than a century, and yet we still struggle with the effect that soil compaction has on crop production and the environment. In this article, we attempt to present the primary causes of soil compaction including trafficking weak soil, excessive loads, and soils that are somewhat predisposed to soil compaction. We also offer suggestions on methods of alleviating soil compaction, which vary from gradual improvement using conservation tillage systems to the immediate improvement offered by subsoiling. Additionally, we cover methods that producers can use to avoid compacting their soil, including reducing their axle load, using radial tires and maintaining proper inflation pressure, duals, tracks, and controlling their traffic. Unfortunately, few if any of our suggestions could be used to cure soil compaction because as long as vehicles are used to plant and harvest crops on the same soil that is used to produce crops, there will continue to be soil compaction and an endless battle to reduce its ill effects.
While a good grasp of the many separate aspects of agriculture is important, it is equally essential for all those involved in agriculture to understand the functioning of the farming system as a whole and how it can be best managed. It is necessary to re-assess and understand rain-fed farming systems around the world and to find ways to improve the selection, design and operation of such systems for long term productivity, profitability and sustainability. The components of the system must operate together efficiently; yet many of the relationships and interactions are not clearly understood. Appreciation of these matters and how they are affected by external influences or inputs are important for decision making and for achieving desirable outcomes for the farm as a whole. This book analyses common rain-fed farming systems and defines the principles and practices important to their effective functioning and management.
This Encyclopedia of Agrophysics will provide up-to-date information on the physical properties and processes affecting the quality of the environment and plant production. It will be a "first-up" volume which will nicely complement the recently published Encyclopedia of Soil Science, (November 2007) which was published in the same series. In a single authoritative volume a collection of about 250 informative articles and ca 400 glossary terms covering all aspects of agrophysics will be presented. The authors will be renowned specialists in various aspects in agrophysics from a wide variety of countries. Agrophysics is important both for research and practical use not only in agriculture, but also in areas like environmental science, land reclamation, food processing etc. Agrophysics is a relatively new interdisciplinary field closely related to Agrochemistry, Agrobiology, Agroclimatology and Agroecology. Nowadays it has been fully accepted as an agricultural and environmental discipline. As such this Encyclopedia volume will be an indispensable working tool for scientists and practitioners from different disciplines, like agriculture, soil science, geosciences, environmental science, geography, and engineering.