Download Free Software Optimization For High Performance Computing Book in PDF and EPUB Free Download. You can read online Software Optimization For High Performance Computing and write the review.

The hands-on guide to high-performance coding and algorithm optimization. This hands-on guide to software optimization introduces state-of-the-art solutions for every key aspect of software performance - both code-based and algorithm-based. Two leading HP software performance experts offer comparative optimization strategies for RISC and for the new Explicitly Parallel Instruction Computing (EPIC) design used in Intel IA-64 processors. Using many practical examples, they offer specific techniques for: Predicting and measuring performance - and identifying your best optimization opportunities Storage optimization: cache, system memory, virtual memory, and I/0 Parallel processing: distributed-memory and shared-memory (SMP and ccNUMA) Compilers and loop optimization Enhancing parallelism: compiler directives, threads, and message passing Mathematical libraries and algorithms Whether you're a developer, ISV, or technical researcher, if you need to optimize high-performance software on today's leading processors, one book delivers the advanced techniques and code examples you need: Software Optimization for High Performance Computing.
Optimizing HPC Applications with Intel® Cluster Tools takes the reader on a tour of the fast-growing area of high performance computing and the optimization of hybrid programs. These programs typically combine distributed memory and shared memory programming models and use the Message Passing Interface (MPI) and OpenMP for multi-threading to achieve the ultimate goal of high performance at low power consumption on enterprise-class workstations and compute clusters. The book focuses on optimization for clusters consisting of the Intel® Xeon processor, but the optimization methodologies also apply to the Intel® Xeon Phi™ coprocessor and heterogeneous clusters mixing both architectures. Besides the tutorial and reference content, the authors address and refute many myths and misconceptions surrounding the topic. The text is augmented and enriched by descriptions of real-life situations.
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author
High Performance Computing: Programming and Applications presents techniques that address new performance issues in the programming of high performance computing (HPC) applications. Omitting tedious details, the book discusses hardware architecture concepts and programming techniques that are the most pertinent to application developers for achievi
Every day we need to solve large problems for which supercomputers are needed. High performance computing (HPC) is a paradigm that allows to efficiently implement large-scale computational tasks on powerful supercomputers unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many challenging real world problems arising in engineering, economics, medicine and other areas can be formulated as large-scale computational tasks. The volume is a comprehensive collection of extended contributions from the High performance computing conference held in Borovets, Bulgaria, September 2019. This book presents recent advances in high performance computing. The topics of interest included into this volume are: HP software tools, Parallel Algorithms and Scalability, HPC in Big Data analytics, Modelling, Simulation & Optimization in a Data Rich Environment, Advanced numerical methods for HPC, Hybrid parallel or distributed algorithms. The volume is focused on important large-scale applications like Environmental and Climate Modeling, Computational Chemistry and Heuristic Algorithms.
Developing software for current and especially for future architectures will require knowledge about parallel programming techniques of applications and library p- grammers. Multi-core processors are already available today, and processors with a dozen and more cores are on the horizon. The major driving force in hardware development, the game industry, has - ready shown interest in using parallel programming paradigms, such as OpenMP for further developments. Therefore developers have to be supported in the even more complex task of programming for these new architectures. HLRS has a long-lasting tradition of providing its user community with the most up-to-date software tools. Additionally, important research and development projects are worked on at the center: among the software packages developed are the MPI correctness checker Marmot, the OpenMP validation suite and the M- implementations PACX-MPI and Open MPI. All of these software packages are - ing extended in the context of German and European community research projects, such as ParMA, the InterActive European Grid (I2G) project and the German C- laborative Research Center (Sonderforschungsbereich 716). Furthermore, ind- trial collaborations, i.e. with Intel and Microsoft allow HLRS to get its software production-grade ready. In April 2007, a European project on Parallel Programming for Multi-core - chitectures, in short ParMA was launched, with a major focus on providing and developing tools for parallel programming.
This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.
Problem-Solving in High Performance Computing: A Situational Awareness Approach with Linux focuses on understanding giant computing grids as cohesive systems. Unlike other titles on general problem-solving or system administration, this book offers a cohesive approach to complex, layered environments, highlighting the difference between standalone system troubleshooting and complex problem-solving in large, mission critical environments, and addressing the pitfalls of information overload, micro, and macro symptoms, also including methods for managing problems in large computing ecosystems. The authors offer perspective gained from years of developing Intel-based systems that lead the industry in the number of hosts, software tools, and licenses used in chip design. The book offers unique, real-life examples that emphasize the magnitude and operational complexity of high performance computer systems. - Provides insider perspectives on challenges in high performance environments with thousands of servers, millions of cores, distributed data centers, and petabytes of shared data - Covers analysis, troubleshooting, and system optimization, from initial diagnostics to deep dives into kernel crash dumps - Presents macro principles that appeal to a wide range of users and various real-life, complex problems - Includes examples from 24/7 mission-critical environments with specific HPC operational constraints
Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python’s implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker