Download Free Software Engineering For Parallel And Distributed Systems Book in PDF and EPUB Free Download. You can read online Software Engineering For Parallel And Distributed Systems and write the review.

A wide range of modern computer applications require the performance and flexibility of parallel and distributed systems. Better software support is required if the technical advances in these systems are to be fully exploited by commerce and industry. This involves the provision of specialised techniques and tools as well as the integration of standard software engineering methods. This book will reflect current advances in this area, and will address issues of theory and practice with contributions from academia and industry. It is the aim of the book to provide a focus for information on this developing which will be of use to both researchers and practitioners.
An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng
Patterns and Skeletons for Parallel and Distributed Computing is a unique survey of research work in high-level parallel and distributed computing over the past ten years. Comprising contributions from the leading researchers in Europe and the US, it looks at interaction patterns and their role in parallel and distributed processing, and demonstrates for the first time the link between skeletons and design patterns. It focuses on computation and communication structures that are beyond simple message-passing or remote procedure calling, and also on pragmatic approaches that lead to practical design and programming methodologies with their associated compilers and tools. The book is divided into two parts which cover: skeletons-related material such as expressing and composing skeletons, formal transformation, cost modelling and languages, compilers and run-time systems for skeleton-based programming.- design patterns and other related concepts, applied to other areas such as real-time, embedded and distributed systems. It will be an essential reference for researchers undertaking new projects in this area, and will also provide useful background reading for advanced undergraduate and postgraduate courses on parallel or distributed system design.
Distributed and Parallel Systems: From Instruction Parallelism to Cluster Computing is the proceedings of the third Austrian-Hungarian Workshop on Distributed and Parallel Systems organized jointly by the Austrian Computer Society and the MTA SZTAKI Computer and Automation Research Institute. This book contains 18 full papers and 12 short papers from 14 countries around the world, including Japan, Korea and Brazil. The paper sessions cover a broad range of research topics in the area of parallel and distributed systems, including software development environments, performance evaluation, architectures, languages, algorithms, web and cluster computing. This volume will be useful to researchers and scholars interested in all areas related to parallel and distributed computing systems.
A comprehensive guide to distributed algorithms that emphasizes examples and exercises rather than mathematical argumentation.
国外著名高等院校信息科学与技术优秀教材
Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. - Contributed and developed by the leading minds in parallel computing research and instruction - Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline - Succinctly addresses a range of parallel and distributed computing topics - Pedagogically designed to ensure understanding by experienced engineers and newcomers - Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts
Advancements in microprocessor architecture, interconnection technology, and software development have fueled rapid growth in parallel and distributed computing. However, this development is only of practical benefit if it is accompanied by progress in the design, analysis and programming of parallel algorithms. This concise textbook provides, in one place, three mainstream parallelization approaches, Open MPP, MPI and OpenCL, for multicore computers, interconnected computers and graphical processing units. An overview of practical parallel computing and principles will enable the reader to design efficient parallel programs for solving various computational problems on state-of-the-art personal computers and computing clusters. Topics covered range from parallel algorithms, programming tools, OpenMP, MPI and OpenCL, followed by experimental measurements of parallel programs’ run-times, and by engineering analysis of obtained results for improved parallel execution performances. Many examples and exercises support the exposition.
This book has been written for practitioners, researchers and stu dents in the fields of parallel and distributed computing. Its objective is to provide detailed coverage of the applications of graph theoretic tech niques to the problems of matching resources and requirements in multi ple computer systems. There has been considerable research in this area over the last decade and intense work continues even as this is being written. For the practitioner, this book serves as a rich source of solution techniques for problems that are routinely encountered in the real world. Algorithms are presented in sufficient detail to permit easy implementa tion; background material and fundamental concepts are covered in full. The researcher will find a clear exposition of graph theoretic tech niques applied to parallel and distributed computing. Research results are covered and many hitherto unpublished spanning the last decade results by the author are included. There are many unsolved problems in this field-it is hoped that this book will stimulate further research.
This book constitutes the proceedings of the 21st International Conference on Parallel and Distributed Computing, Applications, and Technologies, PDCAT 2020, which took place in Shenzhen, China, during December 28-30, 2020. The 34 full papers included in this volume were carefully reviewed and selected from 109 submissions. They deal with parallel and distributed computing of networking and architectures, software systems and technologies, algorithms and applications, and security and privacy.