Download Free Soft Robotics In Rehabilitation Book in PDF and EPUB Free Download. You can read online Soft Robotics In Rehabilitation and write the review.

Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing. Outlines the application of soft robotic techniques to design platforms that provide rehabilitation therapy for disabled persons to help improve their motor functions Discusses the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs Offers readers the ability to find soft robotics devices, methods, and results for any limb, and then compare the results with other options provided in the book
Robot-assisted healthcare offers benefits for repetitive, intensive and task specific training compared to traditional manual manipulation performed by physiotherapists. However, a majority of existing rehabilitation devices use rigid actuators such as electric motors or hydraulic cylinders which cannot guarantee the safety of patients. This book provides biomedical engineering and robotics professionals and students with the fundamental mechatronic engineering knowledge to analyze and design new soft robotic devices. The authors present a systematic investigation of the design, modelling, methods, and control methods, implementation and novel applications of mechatronics to provide better clinical rehabilitation services and new insights into emerging technologies utilized in soft robots for healthcare.
Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing. Outlines the application of soft robotic techniques to design platforms that provide rehabilitation therapy for disabled persons to help improve their motor functions Discusses the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs Offers readers the ability to find soft robotics devices, methods, and results for any limb, and then compare the results with other options provided in the book
Rehabilitation Robotics gives an introduction and overview of all areas of rehabilitation robotics, perfect for anyone new to the field. It also summarizes available robot technologies and their application to different pathologies for skilled researchers and clinicians. The editors have been involved in the development and application of robotic devices for neurorehabilitation for more than 15 years. This experience using several commercial devices for robotic rehabilitation has enabled them to develop the know-how and expertise necessary to guide those seeking comprehensive understanding of this topic. Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as ‘optimal’ trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other’s dynamics. Provides a comprehensive review of recent developments in the area of rehabilitation robotics Includes information on both therapeutic and assistive robots Focuses on the state-of-the-art and representative advancements in the design, control, analysis, implementation and validation of rehabilitation robotic systems
This book presents novel applications of mechatronics to provide better clinical rehabilitation services and new insights into emerging technologies utilized in soft robots for healthcare, and is essential reading for researchers and students working in these and related fields.
The concepts represented in this textbook are explored for the first time in assistive and rehabilitation robotics, which is the combination of physical, cognitive, and social human-robot interaction to empower gait rehabilitation and assist human mobility. The aim is to consolidate the methodologies, modules, and technologies implemented in lower-limb exoskeletons, smart walkers, and social robots when human gait assistance and rehabilitation are the primary targets. This book presents the combination of emergent technologies in healthcare applications and robotics science, such as soft robotics, force control, novel sensing methods, brain-computer interfaces, serious games, automatic learning, and motion planning. From the clinical perspective, case studies are presented for testing and evaluating how those robots interact with humans, analyzing acceptance, perception, biomechanics factors, and physiological mechanisms of recovery during the robotic assistance or therapy. Interfacing Humans and Robots for Gait Assistance and Rehabilitation will enable undergraduate and graduate students of biomedical engineering, rehabilitation engineering, robotics, and health sciences to understand the clinical needs, technology, and science of human-robot interaction behind robotic devices for rehabilitation, and the evidence and implications related to the implementation of those devices in actual therapy and daily life applications.
Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics presents development concepts and applications of optical fiber sensors made of compliant materials in rehabilitation robotics. The book provides methods for the instrumentation of novel compliant devices. It presents the development, characterization and application of optical fiber sensors in robotics, ranging from conventional robots with rigid structures to novel wearable systems with soft structures, including smart textiles and intelligent structures for healthcare. Readers can look to this book for help in designing robotic structures for different applications, including problem-solving tactics in soft robotics. This book will be a great resource for mechanical, electrical and electronics engineers and photonics and optical sensing engineers. Addresses optical fiber sensing solutions in wearable systems and soft robotics Presents developments—from foundational, to novel and future applications—of optical fiber sensors in the next generation of robotic devices Provides methods for the instrumentation of novel compliant devices
Wearable Robotics: Systems and Applications provides a comprehensive overview of the entire field of wearable robotics, including active orthotics (exoskeleton) and active prosthetics for the upper and lower limb and full body. In its two major sections, wearable robotics systems are described from both engineering perspectives and their application in medicine and industry. Systems and applications at various levels of the development cycle are presented, including those that are still under active research and development, systems that are under preliminary or full clinical trials, and those in commercialized products. This book is a great resource for anyone working in this field, including researchers, industry professionals and those who want to use it as a teaching mechanism. Provides a comprehensive overview of the entire field, with both engineering and medical perspectives Helps readers quickly and efficiently design and develop wearable robotics for healthcare applications
Soft robotics is a recent exciting trend of robotics, taking the challenge of using soft materials and deformable structures for building robots, with high potential for impact in science and in applications Given the young and fast growing area and the lively interdisciplinary community that grew around soft robotics, the RoboSoft international conference aims at presenting recent progresses in this field, for discussing new science, new technologies and new opportunities for applications
This book addresses cutting-edge topics in robotics and related technologies for rehabilitation, covering basic concepts and providing the reader with the information they need to solve various practical problems. Intended as a reference guide to the application of robotics in rehabilitation, it covers e.g. musculoskeletal modelling, gait analysis, biomechanics, robotics modelling and simulation, sensors, wearable devices, and the Internet of Medical Things.