Download Free Soft Computing Principles Book in PDF and EPUB Free Download. You can read online Soft Computing Principles and write the review.

Market_Desc: · B. Tech (UG) students of CSE, IT, ECE· College Libraries· Research Scholars· Operational Research· Management Sector Special Features: Dr. S. N. Sivanandam has published 12 books· He has delivered around 150 special lectures of different specialization in Summer/Winter school and also in various Engineering colleges· He has guided and co guided 30 PhD research works and at present 9 PhD research scholars are working under him· The total number of technical publications in International/National Journals/Conferences is around 700· He has also received Certificate of Merit 2005-2006 for his paper from The Institution of Engineers (India)· He has chaired 7 International Conferences and 30 National Conferences. He is a member of various professional bodies like IE (India), ISTE, CSI, ACS and SSI. He is a technical advisor for various reputed industries and engineering institutions· His research areas include Modeling and Simulation, Neural Networks, Fuzzy Systems and Genetic Algorithm, Pattern Recognition, Multidimensional system analysis, Linear and Nonlinear control system, Signal and Image processing, Control System, Power system, Numerical methods, Parallel Computing, Data Mining and Database Security About The Book: This book is meant for a wide range of readers who wish to learn the basic concepts of soft computing. It can also be helpful for programmers, researchers and management experts who use soft computing techniques. The basic concepts of soft computing are dealt in detail with the relevant information and knowledge available for understanding the computing process. The various neural network concepts are explained with examples, highlighting the difference between various architectures. Fuzzy logic techniques have been clearly dealt with suitable examples. Genetic algorithm operators and the various classifications have been discussed in lucid manner, so that a beginner can understand the concepts with minimal effort.
In recent years, soft computing techniques have emerged as a successful tool to understand and analyze the collective behavior of service- oriented computing software. Algorithms and mechanisms of self- organization of complex natural systems have been used to solve problems, particularly in complex systems, which are adaptive, ever- evolving, and distributed in nature across the globe. What fits more perfectly into this scenario other than the rapidly developing era of Fog, IoT, and Edge computing environment? Service- oriented computing can be enhanced with soft computing techniques embedded inside the Cloud, Fog, and IoT systems. Soft Computing Principles and Integration for Real-Time Service-Oriented Computing explores soft computing techniques that have wide application in interdisciplinary areas. These soft computing techniques provide an optimal solution to the optimization problem using single or multiple objectives.The book focuses on basic design principles and analysis of soft computing techniques. It discusses how soft computing techniques can be used to improve quality-of-service in serviceoriented architectures. The book also covers applications and integration of soft computing techniques with a service- oriented computing paradigm. Highlights of the book include: A general introduction to soft computing An extensive literature study of soft computing techniques and emerging trends Soft computing techniques based on the principles of artificial intelligence, fuzzy logic, and neural networks The implementation of SOC with a focus on service composition and orchestration, quality of service (QoS) considerations, security and privacy concerns, governance challenges, and the integration of legacy systems The applications of soft computing in adaptive service composition, intelligent service recommendation, fault detection and diagnosis, SLA management, and security Such principles underlying SOC as loose coupling, reusability, interoperability, and abstraction An IoT based framework for real time data collection and analysis using soft computing
Principles of Soft Computing Using Python Programming An accessible guide to the revolutionary techniques of soft computing Soft computing is a computing approach designed to replicate the human mind’s unique capacity to integrate uncertainty and imprecision into its reasoning. It is uniquely suited to computing operations where rigid analytical models will fail to account for the variety and ambiguity of possible solutions. As machine learning and artificial intelligence become more and more prominent in the computing landscape, the potential for soft computing techniques to revolutionize computing has never been greater. Principles of Soft Computing Using Python Programming provides readers with the knowledge required to apply soft computing models and techniques to real computational problems. Beginning with a foundational discussion of soft or fuzzy computing and its differences from hard computing, it describes different models for soft computing and their many applications, both demonstrated and theoretical. The result is a set of tools with the potential to produce new solutions to the thorniest computing problems. Readers of Principles of Soft Computing Using Python Programming will also find: Each chapter accompanied with Python codes and step-by-step comments to illustrate applications Detailed discussion of topics including artificial neural networks, rough set theory, genetic algorithms, and more Exercises at the end of each chapter including both short- and long-answer questions to reinforce learning Principles of Soft Computing Using Python Programming is ideal for researchers and engineers in a variety of fields looking for new solutions to computing problems, as well as for advanced students in programming or the computer sciences.
Market_Desc: · B. Tech (UG) students ofü CSEü ITü ECE· College Libraries· Research Scholars· Operational Research· Management Sector Special Features: · Detailed explanation of soft computing concepts.· Study on various artificial neural network architecture.· Description on fuzzy logic techniques.· Introduction to genetic algorithm and its types for solving optimization problems.· Numerous artificial neural network, fuzzy logic and genetic algorithm problems.· Implementation of soft computing techniques using C and C++.· Simulated solutions for soft computing concepts using MATLAB package.· Application case studies on soft computing techniques on emerging fields.· Various hybrid soft computing techniques.New in this edition· Certain topics have been added such as:ü Fundamentals of Genetic Algorithmsü Genetic Modelingü Integration of Neural Networks, Fuzzy Logic, and Genetic Algorithms· A new chapter Hybrid Soft Computing Techniques has been added bringing the advantages of combining individual techniques.· 5 Sample Question Papers have been added at the end of the book. Accompanying CD contains · Power point presentations· Source Codes for Soft Computing Techniques in C· MATLAB Source Code Programs About The Book: In this book the basic concepts of soft computing are dealt in detail with the relevant information and knowledge available for understanding the computing process. The various neural network concepts are explained with examples, highlighting the difference between various architectures. Fuzzy logic techniques have been clearly dealt with suitable examples. Genetic algorithm operators and the various classifications have been discussed in lucid manner, so that a beginner can understand the concepts with minimal effort.The book can be used as a handbook as well as a guide for students of all engineering disciplines, soft computing research scholars, management sector, operational research area, computer applications and for various professionals who work in this area.
Soft Computing starts with an introduction to soft computing, a family consists of many members, namely genetic algorithms (GAs), fuzzy logic (FL), neural networks (NNs), and others. To realize the need for a non-traditional optimization tool like GA, one chapter is devoted to explain the principle of traditional optimization. The working cycle of a GA is explained in detail. The mechanisms of some specialized GAs are then discussed with some appropriate examples. The working principles of some other non-traditional optimization tools like simulated annealing (SA) and particle swarm optimization (PSO) are discussed in detail. Multi-objective optimization has been dealt in a separate chapter, where the working principles of a few approaches are explained. Fuzzy sets are introduced before explaining the principle of fuzzy reasoning and clustering. The fundamentals of NNs are presented, prior to the discussion on various forms of NN. The combined techniques, such as GA-FL, GA-NN, NN-FL and GA-FL-NN are then explained, and the last chapter deals with the applications of soft computing in two different fields of research. It has been written to fulfill the requirements of a large number of readers belonging to various disciplines of engineering and general sciences. The algorithms are discussed with a number of solved numerical examples. It will be very much helpful to the students, scientists and practicing engineers.
"This book explores emerging technologies and best practices designed to effectively address concerns inherent in properly optimizing advanced systems, demonstrating applications in areas such as bio-engineering, space exploration, industrial informatics, information security, and nuclear and renewable energies"--Provided by publisher.
This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.
The world we live in is pervaded with uncertainty and imprecision. Is it likely to rain this afternoon? Should I take an umbrella with me? Will I be able to find parking near the campus? Should I go by bus? Such simple questions are a c- mon occurrence in our daily lives. Less simple examples: What is the probability that the price of oil will rise sharply in the near future? Should I buy Chevron stock? What are the chances that a bailout of GM, Ford and Chrysler will not s- ceed? What will be the consequences? Note that the examples in question involve both uncertainty and imprecision. In the real world, this is the norm rather than exception. There is a deep-seated tradition in science of employing probability theory, and only probability theory, to deal with uncertainty and imprecision. The mon- oly of probability theory came to an end when fuzzy logic made its debut. H- ever, this is by no means a widely accepted view. The belief persists, especially within the probability community, that probability theory is all that is needed to deal with uncertainty. To quote a prominent Bayesian, Professor Dennis Lindley, “The only satisfactory description of uncertainty is probability.
Computational Intelligence: Principles, Techniques and Applications presents both theories and applications of computational intelligence in a clear, precise and highly comprehensive style. The textbook addresses the fundamental aspects of fuzzy sets and logic, neural networks, evolutionary computing and belief networks. The application areas include fuzzy databases, fuzzy control, image understanding, expert systems, object recognition, criminal investigation, telecommunication networks, and intelligent robots. The book contains many numerical examples and homework problems with sufficient hints so that the students can solve them on their own.
As the climate and environment continue to fluctuate, researchers are urgently looking for new ways to preserve our limited resources and prevent further environmental degradation. The answer can be found through computer science, a field that is evolving at precisely the time it is needed most. Soft Computing Applications for Renewable Energy and Energy Efficiency brings together the latest technological research in computational intelligence and fuzzy logic as a way to care for our environment. This reference work highlights current advances and future trends in environmental sustainability using the principles of soft computing, making it an essential resource for students, researchers, engineers, and practitioners in the fields of project engineering and energy science.