Download Free Soft Computing In Advanced Robotics Book in PDF and EPUB Free Download. You can read online Soft Computing In Advanced Robotics and write the review.

Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. This edition is published in original, peer reviewed contributions covering from initial design to final prototypes and authorization.
Soft computing is a branch of computing which, unlike hard computing, can deal with uncertain, imprecise and inexact data. The three constituents of soft computing are fuzzy-logic-based computing, neurocomputing, and genetic algorithms. Fuzzy logic contributes the capability of approximate reasoning, neurocomputing offers function approximation and learning capabilities, and genetic algorithms provide a methodology for systematic random search and optimization. These three capabilities are combined in a complementary and synergetic fashion.This book presents a cohesive set of contributions dealing with important issues and applications of soft computing in systems and control technology. The contributions include state-of-the-art material, mathematical developments, fresh results, and how-to-do issues. Among the problems studied via neural, fuzzy, neurofuzzy and genetic methodologies are: data fusion, reinforcement learning, approximation properties, multichannel imaging, signal processing, system optimization, gaming, and several forms of control.The book can serve as a reference for researchers and practitioners in the field. Readers can find in it a large amount of useful and timely information, and thus save considerable effort in searching for other scattered literature.
This book shares important findings on the application of robotics in industry using advanced mechanisms, including software and hardware. It presents a collection of recent trends and research on various advanced computing paradigms such as soft computing, robotics, smart automation, power control, and uncertainty analysis. The book constitutes the proceedings of the 1st International Conference on Application of Robotics in Industry using Advanced Mechanisms (ARIAM2019), which offered a platform for sharing original research findings, presenting innovative ideas and applications, and comparing notes on various aspects of robotics. The contributions highlight the latest research and industrial applications of robotics, and discuss approaches to improving the smooth functioning of industries. Moreover, they focus on designing solutions for complex engineering problems and designing system components or processes to meet specific needs, with due considerations for public health and safety, including cultural, societal, and environmental considerations. Taken together, they offer a valuable resource for researchers, scientists, engineers, professionals and students alike.
Advanced robotics describes the use of sensor-based robotic devices which exploit powerful computers to achieve the high levels of functionality that begin to mimic intelligent human behaviour. The object of this book is to summarise developments in the base technologies, survey recent applications and highlight new advanced concepts which will influence future progress.
The book offers an insight on artificial neural networks for giving a robot a high level of autonomous tasks, such as navigation, cost mapping, object recognition, intelligent control of ground and aerial robots, and clustering, with real-time implementations. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures.
In this book, we look at how cluster technology can be leveraged to build better robots. Algorithms and approaches in key areas of robotics and computer vision, such as map building, path planning, target tracking, action selection and learning, are reviewed and cluster implementations for these are presented. The objective of the book is to give professionals working in the beowulf cluster or robotics and computer vision fields a concrete view of the strong synergy between the areas as well as to spur further fruitful exploitation of this connection. The book is written at a level appropriate for an advanced undergraduate or graduate student. The key concepts in robotics, computer vision and cluster computing are introduced before being used to make the text useful to a wide audience in these fields.
This book describes in a detailed fashion the application of hybrid intelligent systems using soft computing techniques for intelligent control and mobile robotics. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The prudent combination of SC techniques can produce powerful hybrid intelligent systems that are capable of solving real-world problems. This is illustrated in this book with a wide range of applications, with particular emphasis in intelligent control and mobile robotics. The book is organized in five main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theory and algorithms, which are basically papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of intelligent control, which are basically papers using bio-inspired techniques, like evolutionary algorithms and neural networks, for achieving intelligent control of non-linear plants. The third part contains papers with the theme of optimization of fuzzy controllers, which basically consider the application of bio-inspired optimization methods to automate the de-sign process of optimal type-1 and type-2 fuzzy controllers. The fourth part contains papers that deal with the application of SC techniques in times series prediction and intelligent agents. The fifth part contains papers with the theme of computer vision and robotics, which are papers considering soft computing methods for applications related to vision and robotics.
The author has maintained two open-source MATLAB Toolboxes for more than 10 years: one for robotics and one for vision. The key strength of the Toolboxes provide a set of tools that allow the user to work with real problems, not trivial examples. For the student the book makes the algorithms accessible, the Toolbox code can be read to gain understanding, and the examples illustrate how it can be used —instant gratification in just a couple of lines of MATLAB code. The code can also be the starting point for new work, for researchers or students, by writing programs based on Toolbox functions, or modifying the Toolbox code itself. The purpose of this book is to expand on the tutorial material provided with the toolboxes, add many more examples, and to weave this into a narrative that covers robotics and computer vision separately and together. The author shows how complex problems can be decomposed and solved using just a few simple lines of code, and hopefully to inspire up and coming researchers. The topics covered are guided by the real problems observed over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes a lot of Matlab examples and figures. The book is a real walk through the fundamentals of robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and epipolar geometry, and bring it all together in a visual servo system. Additional material is provided at http://www.petercorke.com/RVC
The book includes topics, such as: path planning, avoiding obstacles, following the path, go-to-goal control, localization, and visual-based motion control. The theoretical concepts are illustrated with a developed control architecture with soft computing and artificial intelligence methods. The proposed vision-based motion control strategy involves three stages. The first stage consists of the overhead camera calibration and the configuration of the working environment. The second stage consists of a path planning strategy using several traditional path planning algorithms and proposed planning algorithm. The third stage consists of the path tracking process using previously developed Gauss and Decision Tree control approaches and the proposed Type-1 and Type-2 controllers. Two kinematic structures are utilized to acquire the input values of controllers. These are Triangle Shape-Based Controller Design, which was previously developed and Distance-Based Triangle Structure that is used for the first time in conducted experiments. Four different control algorithms, Type-1 fuzzy logic, Type-2 Fuzzy Logic, Decision Tree Control, and Gaussian Control have been used in overall system design. The developed system includes several modules that simplify characterizing the motion control of the robot and ensure that it maintains a safe distance without colliding with any obstacles on the way to the target. The topics of the book are extremely relevant in many areas of research, as well as in education in courses in computer science, electrical and mechanical engineering and in mathematics at the graduate and undergraduate levels.
The proceedings of SocProS 2013 serve as an academic bonanza for scientists and researchers working in the field of Soft Computing. This book contains theoretical as well as practical aspects of Soft Computing, an umbrella term for techniques like fuzzy logic, neural networks and evolutionary algorithms, swarm intelligence algorithms etc. This book will be beneficial for the young as well as experienced researchers dealing with complex and intricate real world problems for which finding a solution by traditional methods is very difficult. The different areas covered in the proceedings are: Image Processing, Cryptanalysis, Supply Chain Management, Newly Proposed Nature Inspired Algorithms, Optimization, Problems related to Medical and Health Care, Networking etc.