Download Free Social Media Analytics In Predicting Consumer Behavior Book in PDF and EPUB Free Download. You can read online Social Media Analytics In Predicting Consumer Behavior and write the review.

Information is very important for businesses. Businesses that use information correctly are successful while those that don’t, decline. Social media is an important source of data. This data brings us to social media analytics. Surveys are no longer the only way to hear the voice of consumers. With the data obtained from social media platforms, businesses can devise marketing strategies. It provides a better understanding consumer behavior. As consumers are at the center of all business activities, it is unrealistic to succeed without understanding consumption patterns. Social media analytics is useful, especially for marketers. Marketers can evaluate the data to make strategic marketing plans. Social media analytics and consumer behavior are two important issues that need to be addressed together. The book differs in that it handles social media analytics from a different perspective. It is planned that social media analytics will be discussed in detail in terms of consumer behavior in the book. The book will be useful to the students, businesses, and marketers in many aspects.
Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses. Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources. In it, you will learn: The four key characteristics of online services-users, social networks, actions, and content The full data discovery lifecycle-data extraction, storage, analysis, and visualization How to work with code and extract data to create solutions How to use Big Data to make accurate customer predictions How to personalize the social media experience using machine learning Using the techniques the authors detail will provide organizations the competitive advantage they need to harness the rich data available from social media platforms.
This book examines issues and implications of digital and social media marketing for emerging markets. These markets necessitate substantial adaptations of developed theories and approaches employed in the Western world. The book investigates problems specific to emerging markets, while identifying new theoretical constructs and practical applications of digital marketing. It addresses topics such as electronic word of mouth (eWOM), demographic differences in digital marketing, mobile marketing, search engine advertising, among others. A radical increase in both temporal and geographical reach is empowering consumers to exert influence on brands, products, and services. Information and Communication Technologies (ICTs) and digital media are having a significant impact on the way people communicate and fulfil their socio-economic, emotional and material needs. These technologies are also being harnessed by businesses for various purposes including distribution and selling of goods, retailing of consumer services, customer relationship management, and influencing consumer behaviour by employing digital marketing practices. This book considers this, as it examines the practice and research related to digital and social media marketing.
Understanding consumer behavior in today's digital landscape is more challenging than ever. Businesses must navigate a sea of data to discern meaningful patterns and correlations that drive effective customer engagement and product development. However, the ever-changing nature of consumer behavior presents a daunting task, making it difficult for companies to gauge the wants and needs of their target audience accurately. Enhancing and Predicting Digital Consumer Behavior with AI offers a comprehensive solution to this pressing issue. A strong focus on concepts, theories, and analytical techniques for tracking consumer behavior changes provides the roadmap for businesses to navigate the complexities of the digital age. By covering topics such as digital consumers, emotional intelligence, and data analytics, this book serves as a timely and invaluable resource for academics and practitioners seeking to understand and adapt to the evolving landscape of consumer behavior.
Practical Business Analytics Using SAS: A Hands-on Guide shows SAS users and businesspeople how to analyze data effectively in real-life business scenarios. The book begins with an introduction to analytics, analytical tools, and SAS programming. The authors—both SAS, statistics, analytics, and big data experts—first show how SAS is used in business, and then how to get started programming in SAS by importing data and learning how to manipulate it. Besides illustrating SAS basic functions, you will see how each function can be used to get the information you need to improve business performance. Each chapter offers hands-on exercises drawn from real business situations. The book then provides an overview of statistics, as well as instruction on exploring data, preparing it for analysis, and testing hypotheses. You will learn how to use SAS to perform analytics and model using both basic and advanced techniques like multiple regression, logistic regression, and time series analysis, among other topics. The book concludes with a chapter on analyzing big data. Illustrations from banking and other industries make the principles and methods come to life. Readers will find just enough theory to understand the practical examples and case studies, which cover all industries. Written for a corporate IT and programming audience that wants to upgrade skills or enter the analytics field, this book includes: More than 200 examples and exercises, including code and datasets for practice. Relevant examples for all industries. Case studies that show how to use SAS analytics to identify opportunities, solve complicated problems, and chart a course. Practical Business Analytics Using SAS: A Hands-on Guide gives you the tools you need to gain insight into the data at your fingertips, predict business conditions for better planning, and make excellent decisions. Whether you are in retail, finance, healthcare, manufacturing, government, or any other industry, this book will help your organization increase revenue, drive down costs, improve marketing, and satisfy customers better than ever before.
Make personalized marketing a reality with this practical guide to predictive analytics Predictive Marketing is a predictive analytics primer for organizations large and small, offering practical tips and actionable strategies for implementing more personalized marketing immediately. The marketing paradigm is changing, and this book provides a blueprint for navigating the transition from creative- to data-driven marketing, from one-size-fits-all to one-on-one, and from marketing campaigns to real-time customer experiences. You'll learn how to use machine-learning technologies to improve customer acquisition and customer growth, and how to identify and re-engage at-risk or lapsed customers by implementing an easy, automated approach to predictive analytics. Much more than just theory and testament to the power of personalized marketing, this book focuses on action, helping you understand and actually begin using this revolutionary approach to the customer experience. Predictive analytics can finally make personalized marketing a reality. For the first time, predictive marketing is accessible to all marketers, not just those at large corporations — in fact, many smaller organizations are leapfrogging their larger counterparts with innovative programs. This book shows you how to bring predictive analytics to your organization, with actionable guidance that get you started today. Implement predictive marketing at any size organization Deliver a more personalized marketing experience Automate predictive analytics with machine learning technology Base marketing decisions on concrete data rather than unproven ideas Marketers have long been talking about delivering personalized experiences across channels. All marketers want to deliver happiness, but most still employ a one-size-fits-all approach. Predictive Marketing provides the information and insight you need to lift your organization out of the campaign rut and into the rarefied atmosphere of a truly personalized customer experience.
The emergence of new technologies within the industrial revolution has transformed businesses to a new socio-digital era. In this new era, businesses are concerned with collecting data on customer needs, behaviors, and preferences for driving effective customer engagement and product development, as well as for crucial decision making. However, the ever-shifting behaviors of consumers provide many challenges for businesses to pinpoint the wants and needs of their audience. The Handbook of Research on Consumer Behavior Change and Data Analytics in the Socio-Digital Era focuses on the concepts, theories, and analytical techniques to track consumer behavior change. It provides multidisciplinary research and practice focusing on social and behavioral analytics to track consumer behavior shifts and improve decision making among businesses. Covering topics such as consumer sentiment analysis, emotional intelligence, and online purchase decision making, this premier reference source is a timely resource for business executives, entrepreneurs, data analysts, marketers, advertisers, government officials, social media professionals, libraries, students and educators of higher education, researchers, and academicians.
In the age of digital transformation, the tourism industry faces a pressing challenge: balancing the growing demand for travel with the imperative to protect the environment and preserve local cultures. The rise of digital platforms has revolutionized how people plan, book, and experience travel, but it has also intensified concerns about overtourism, cultural commodification, and environmental degradation. Without thoughtful intervention, these trends threaten to undermine the destinations travelers seek to explore. Promoting Responsible Tourism With Digital Platforms offers a comprehensive solution by exploring how digital platforms can be leveraged to promote responsible travel practices. By examining case studies, theoretical frameworks, and the latest technological advancements, the book provides actionable insights for policymakers, industry professionals, and travelers alike. It serves as a roadmap for integrating responsible tourism principles into the digital landscape, ensuring that tourism remains sustainable and beneficial for all stakeholders.
This book is a transformative guide catering to undergraduate and graduate students and research scholars, providing a comprehensive understanding of critical concepts in modern analytics. In today’s fast-paced business landscape, data utilization is paramount for success. This book delves into tools and techniques facilitating the conversion of raw data into actionable insights, covering descriptive, predictive, and prescriptive analytics. Beginning with foundational principles, it ensures accessibility for readers of all backgrounds. Real-world case studies seamlessly woven throughout the text illustrate successful business analytics implementations, showcasing how organizations make strategic decisions. This precise and insightful guide equips readers with the knowledge to optimize processes, making it an indispensable resource for navigating the dynamic realm of business analytics.
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a