Download Free Social Constructivism As A Philosophy Of Mathematics Book in PDF and EPUB Free Download. You can read online Social Constructivism As A Philosophy Of Mathematics and write the review.

Extends the ideas of social constructivism to the philosophy of mathematics, developing a powerful critique of traditional absolutist conceptions of mathematics, and proposing a reconceptualization of the philosophy of mathematics.
Extends the ideas of social constructivism to the philosophy of mathematics, developing a powerful critique of traditional absolutist conceptions of mathematics, and proposing a reconceptualization of the philosophy of mathematics.
Proposing social constructivism as a novel philosophy of mathematics, this book is inspired by current work in sociology of knowledge and social studies of science. It extends the ideas of social constructivism to the philosophy of mathematics, developing a whole set of new notions. The outcome is a powerful critique of traditional absolutist conceptions of mathematics, as well as of the field of philosophy of mathematics itself. Proposed are a reconceptualization of the philosophy of mathematics and a new set of adequacy criteria. The book offers novel analyses of the important but under-recognized contributions of Wittgenstein and Lakatos to the philosophy of mathematics. Building on their ideas, it develops a theory of mathematical knowledge and its relation to the social context. It offers an original theory of mathematical knowledge based on the concept of conversation, and develops the rhetoric of mathematics to account for proof in mathematics. Another novel feature is the account of the social construction of subjective knowledge, which relates the learning of mathematics to philosophy of mathematics via the development of the individual mathematician. It concludes by considering the values of mathematics and its social responsibility.
This survey provides a brief and selective overview of research in the philosophy of mathematics education. It asks what makes up the philosophy of mathematics education, what it means, what questions it asks and answers, and what is its overall importance and use? It provides overviews of critical mathematics education, and the most relevant modern movements in the philosophy of mathematics. A case study is provided of an emerging research tradition in one country. This is the Hermeneutic strand of research in the philosophy of mathematics education in Brazil. This illustrates one orientation towards research inquiry in the philosophy of mathematics education. It is part of a broader practice of ‘philosophical archaeology’: the uncovering of hidden assumptions and buried ideologies within the concepts and methods of research and practice in mathematics education. An extensive bibliography is also included.
These two volumes cover the principal approaches to constructivism in mathematics. They present a thorough, up-to-date introduction to the metamathematics of constructive mathematics, paying special attention to Intuitionism, Markov's constructivism and Martin-Lof's type theory with its operational semantics. A detailed exposition of the basic features of constructive mathematics, with illustrations from analysis, algebra and topology, is provided, with due attention to the metamathematical aspects. Volume 1 is a self-contained introduction to the practice and foundations of constructivism, and does not require specialized knowledge beyond basic mathematical logic. Volume 2 contains mainly advanced topics of a proof-theoretical and semantical nature.
Mathematics is the science of acts without things - and through this, of things one can define by acts. 1 Paul Valéry The essays collected in this volume form a mosaik of theory, research, and practice directed at the task of spreading mathematical knowledge. They address questions raised by the recurrent observation that, all too frequently, the present ways and means of teaching mathematics generate in the student a lasting aversion against numbers, rather than an understanding of the useful and sometimes enchanting things one can do with them. Parents, teachers, and researchers in the field of education are well aware of this dismal situation, but their views about what causes the wide-spread failure and what steps should be taken to correct it have so far not come anywhere near a practicable consensus. The authors of the chapters in this book have all had extensive experience in teaching as well as in educational research. They approach the problems they have isolated from their own individual perspectives. Yet, they share both an overall goal and a specific fundamental conviction that characterized the efforts about which they write here. The common goal is to find a better way to teach mathematics. The common conviction is that knowledge cannot simply be transferred ready-made from parent to child or from teacher to student but has to be actively built up by each learner in his or her own mind.
Constructivism is one of the most influential theories in contemporary education and learning theory. It has had great influence in science education. The papers in this collection represent, arguably, the most sustained examination of the theoretical and philosophical foundations of constructivism yet published. Topics covered include: orthodox epistemology and the philosophical traditions of constructivism; the relationship of epistemology to learning theory; the connection between philosophy and pedagogy in constructivist practice; the difference between radical and social constructivism, and an appraisal of their epistemology; the strengths and weaknesses of the Strong Programme in the sociology of science and implications for science education. The book contains an extensive bibliography. Contributors include philosophers of science, philosophers of education, science educators, and cognitive scientists. The book is noteworthy for bringing this diverse range of disciplines together in the examination of a central educational topic.
What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual accessibility and correct representation of the issues. Friend examines the standard theories of mathematics - Platonism, realism, logicism, formalism, constructivism and structuralism - as well as some less standard theories such as psychologism, fictionalism and Meinongian philosophy of mathematics. In each case Friend explains what characterises the position and where the divisions between them lie, including some of the arguments in favour and against each. This book also explores particular questions that occupy present-day philosophers and mathematicians such as the problem of infinity, mathematical intuition and the relationship, if any, between the philosophy of mathematics and the practice of mathematics. Taking in the canonical ideas of Aristotle, Kant, Frege and Whitehead and Russell as well as the challenging and innovative work of recent philosophers like Benacerraf, Hellman, Maddy and Shapiro, Friend provides a balanced and accessible introduction suitable for upper-level undergraduate courses and the non-specialist.
The author charts her developing ideas as she undertakes a several-year-long inquiry into an investigative, constructivist approach to mathematics teaching. She presents an account of constructivism as a philosophy of knowledge and learning, provides a rationale for the research methods she employs, and details case studies in the teaching and thinking of three teachers. The research took place in the UK before the introduction of the National Curriculum. Annotation copyright by Book News, Inc., Portland, OR
Sixteen original essays exploring recent developments in the philosophy of mathematics, written in a way mathematicians will understand.