Download Free Snow And Ice On The Earths Surface Book in PDF and EPUB Free Download. You can read online Snow And Ice On The Earths Surface and write the review.

The earth’s cryosphere, which includes snow, glaciers, ice caps, ice sheets, ice shelves, sea ice, river and lake ice, and permafrost, contains about 75% of the earth’s fresh water. It exists at almost all latitudes, from the tropics to the poles, and plays a vital role in controlling the global climate system. It also provides direct visible evidence of the effect of climate change, and, therefore, requires proper understanding of its complex dynamics. This encyclopedia mainly focuses on the various aspects of snow, ice and glaciers, but also covers other cryospheric branches, and provides up-to-date information and basic concepts on relevant topics. It includes alphabetically arranged and professionally written, comprehensive and authoritative academic articles by well-known international experts in individual fields. The encyclopedia contains a broad spectrum of topics, ranging from the atmospheric processes responsible for snow formation; transformation of snow to ice and changes in their properties; classification of ice and glaciers and their worldwide distribution; glaciation and ice ages; glacier dynamics; glacier surface and subsurface characteristics; geomorphic processes and landscape formation; hydrology and sedimentary systems; permafrost degradation; hazards caused by cryospheric changes; and trends of glacier retreat on the global scale along with the impact of climate change. This book can serve as a source of reference at the undergraduate and graduate level and help to better understand snow, ice and glaciers. It will also be an indispensable tool containing specialized literature for geologists, geographers, climatologists, hydrologists, and water resources engineers; as well as for those who are engaged in the practice of agricultural and civil engineering, earth sciences, environmental sciences and engineering, ecosystem management, and other relevant subjects.
Snow and Ice-Related Hazards, Risks, and Disasters provides you with the latest scientific developments in glacier surges and melting, ice shelf collapses, paleo-climate reconstruction, sea level rise, climate change implications, causality, impacts, preparedness, and mitigation. It takes a geo-scientific approach to the topic while also covering current thinking about directly related social scientific issues that can adversely affect ecosystems and global economies. Puts the contributions from expert oceanographers, geologists, geophysicists, environmental scientists, and climatologists selected by a world-renowned editorial board in your hands Presents the latest research on causality, glacial surges, ice-shelf collapses, sea level rise, climate change implications, and more Numerous tables, maps, diagrams, illustrations and photographs of hazardous processes will be included Features new insights into the implications of climate change on increased melting, collapsing, flooding, methane emissions, and sea level rise
This book presents the prevailing state of snow-climate science for researchers and advanced students.
This volume outlines the fundamentals and applications of light scattering, absorption and polarization processes involving ice crystals.
The introduction of the term periglacial by Lozinski in 1909 to describe the cold-climate conditions in the zone adjacent to, but beyond, the Pleistocene glaciers encouraged the separate development of geocryological and glaciological research. Geological and geomorphological processes at the interface between glaciers and permafrost have, as a result, been given less attention than they warrant, and the influence of one on the other has in many respects been neglected. This book includes a collection of papers that emphasize glacier-permafrost interactions. Papers consider permafrost and its influence on glacitectonic processes, glacial meltwater systems and ground-ice development in proglacial and ice-marginal environments. In addition, recent research findings are reported on paraglacial processes, permafrost evolution, rock glaciers, the formation of ice-wedge casts and periglacial slope evolution. It is hoped that this book will stimulate interest in the interface between glacial and periglacial systems, and encourage further collaborative research involving glaciologists and glacial geologists on the one hand, and geocryologists and permafrost scientists on the other.
In the 1990s Richard B. Alley and his colleagues made headlines with the discovery that the last ice age came to an abrupt end over a period of only three years. In The Two-Mile Time Machine, Alley tells the fascinating history of global climate changes as revealed by reading the annual rings of ice from cores drilled in Greenland. He explains that humans have experienced an unusually temperate climate compared to the wild fluctuations that characterized most of prehistory. He warns that our comfortable environment could come to an end in a matter of years and tells us what we need to know in order to understand and perhaps overcome climate changes in the future. In a new preface, the author weighs in on whether our understanding of global climate change has altered in the years since the book was first published, what the latest research tells us, and what he is working on next.
Many advances in spaceborne instrumentation, remote sensing, and data analysis have occurred in recent years, but until now there has been no book that reflects these advances while delivering a uniform treatment of the remote sensing of frozen regions. Remote Sensing of Snow and Ice identifies unifying themes and ideas in these fields and presents them in a single volume. This book provides a comprehensive introduction to the remote sensing of the Earth’s cryosphere. Explaining why cryospheric observations are important and why remote sensing observations are essential, it offers thorough surveys of the physical properties of ice and snow, and of current and emerging remote sensing techniques. Presenting a technical review of how the properties of snow and ice relate to remote sensing observations, the book focuses on principles by which useful geophysical information becomes encoded into the electromagnetic radiation detected during the remote sensing process. The author then discusses in detail the application of remote sensing methods to snow, freshwater ice, glaciers, and icebergs. The book concludes with a summary that examines what remote sensing has revealed about the cryosphere, where major technical problems still exist, and how these problems can be addressed.
Climate Change: Evidence and Causes is a jointly produced publication of The US National Academy of Sciences and The Royal Society. Written by a UK-US team of leading climate scientists and reviewed by climate scientists and others, the publication is intended as a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked. Climate Change makes clear what is well-established and where understanding is still developing. It echoes and builds upon the long history of climate-related work from both national academies, as well as on the newest climate-change assessment from the United Nations' Intergovernmental Panel on Climate Change. It touches on current areas of active debate and ongoing research, such as the link between ocean heat content and the rate of warming.