Download Free Smc 03 Conference Proceedings Book in PDF and EPUB Free Download. You can read online Smc 03 Conference Proceedings and write the review.

This book comprises the proceedings of the Annual Conference of the Canadian Society of Civil Engineering 2021. The contents of this volume focus on specialty conferences in construction, environmental, hydrotechnical, materials, structures, transportation engineering, etc. This volume will prove a valuable resource for those in academia and industry.
The book is a comprehensive guide that explores the use of artificial intelligence and machine learning in drug discovery and development covering a range of topics, including the use of molecular modeling, docking, identifying targets, selecting compounds, and optimizing drugs. The intersection of Artificial Intelligence (AI) and Machine Learning (ML) within the field of drug design and development represents a pivotal moment in the history of healthcare and pharmaceuticals. The remarkable synergy between cutting-edge technology and the life sciences has ushered in a new era of possibilities, offering unprecedented opportunities, formidable challenges, and a tantalizing glimpse into the future of medicine. AI can be applied to all the key areas of the pharmaceutical industry, such as drug discovery and development, drug repurposing, and improving productivity within a short period. Contemporary methods have shown promising results in facilitating the discovery of drugs to target different diseases. Moreover, AI helps in predicting the efficacy and safety of molecules and gives researchers a much broader chemical pallet for the selection of the best molecules for drug testing and delivery. In this context, drug repurposing is another important topic where AI can have a substantial impact. With the vast amount of clinical and pharmaceutical data available to date, AI algorithms find suitable drugs that can be repurposed for alternative use in medicine. This book is a comprehensive exploration of this dynamic and rapidly evolving field. In an era where precision and efficiency are paramount in drug discovery, AI and ML have emerged as transformative tools, reshaping the way we identify, design, and develop pharmaceuticals. This book is a testament to the profound impact these technologies have had and will continue to have on the pharmaceutical industry, healthcare, and ultimately, patient well-being. The editors of this volume have assembled a distinguished group of experts, researchers, and thought leaders from both the AI, ML, and pharmaceutical domains. Their collective knowledge and insights illuminate the multifaceted landscape of AI and ML in drug design and development, offering a roadmap for navigating its complexities and harnessing its potential. In each section, readers will find a rich tapestry of knowledge, case studies, and expert opinions, providing a 360-degree view of AI and ML’s role in drug design and development. Whether you are a researcher, scientist, industry professional, policymaker, or simply curious about the future of medicine, this book offers 19 state-of-the-art chapters providing valuable insights and a compass to navigate the exciting journey ahead. Audience The book is a valuable resource for a wide range of professionals in the pharmaceutical and allied industries including researchers, scientists, engineers, and laboratory workers in the field of drug discovery and development, who want to learn about the latest techniques in machine learning and AI, as well as information technology professionals who are interested in the application of machine learning and artificial intelligence in drug development.
This book covers different aspects of real-world applications of optimization algorithms. It provides insights from the Sixth International Conference on Harmony Search, Soft Computing and Applications held at Istanbul University, Turkey, in July 2020. Harmony Search (HS) is one of the most popular metaheuristic algorithms, developed in 2001 by Prof. Joong Hoon Kim and Prof. Zong Woo Geem, that mimics the improvisation process of jazz musicians to seek the best harmony. The book consists of research articles on novel and newly proposed optimization algorithms; the theoretical study of nature-inspired optimization algorithms; numerically established results of nature-inspired optimization algorithms; and real-world applications of optimization algorithms and synthetic benchmarking of optimization algorithms.
Human–Robot Interaction (HRI) considers how people can interact with robots in order to enable robots to best interact with people. HRI presents many challenges with solutions requiring a unique combination of skills from many fields, including computer science, artificial intelligence, social sciences, ethology and engineering. We have specifically aimed this work to appeal to such a multi-disciplinary audience. This volume presents new and exciting material from HRI researchers who discuss research at the frontiers of HRI. The chapters address the human aspects of interaction, such as how a robot may understand, provide feedback and act as a social being in interaction with a human, to experimental studies and field implementations of human–robot collaboration ranging from joint action, robots practically and safely helping people in real world situations, robots helping people via rehabilitation and robots acquiring concepts from communication. This volume reflects current trends in this exciting research field.
The book covers different aspects of real-world applications of optimization algorithms. It provides insights from the Seventh International Conference on Harmony Search, Soft Computing and Applications held at Virtual Conference, Seoul, South Korea, in February 2022. Harmony search (HS) is one of the most popular metaheuristic algorithms, developed in 2001 by Prof. Joong Hoon Kim and Prof. Zong Woo Geem, that mimics the improvisation process of jazz musicians to seek the best harmony. The book consists of research articles on novel and newly proposed optimization algorithms; the theoretical study of nature-inspired optimization algorithms; numerically established results of nature-inspired optimization algorithms; and real-world applications of optimization algorithms and synthetic benchmarking of optimization algorithms.
Sound in human–robot interaction currently encompasses a wide range of approaches and methodologies not easily classified, analyzed or compared among projects. This edited book covers the state of the art in sound and robotics, aiming to gather existing approaches in a combined volume. Collecting chapters from world-leading academic and industry authors, Sound and Robotics: Speech, Non-Verbal Audio and Robotic Musicianship explores how robots can communicate through speech, non-verbal audio and music. The first set of chapters explores how robots use verbal communication, considering the possibilities of speech for human–robot interaction. The second section shifts to roles of non-verbal communication in HRI, including consequential sound, sonification and audio cues. The third and final section describes current approaches to robotic musicianship and their evaluation. This book is primarily aimed at HRI researchers, ranging from those who have never used sound to those very experienced with sound. Alongside robotic researchers, this book will present avenues for a diverse range of musicians, composers and sound designers to become introduced to the world of HRI and learn of potential creative directions in robotics.
The recent pandemic has forced researchers to adapt technologies such as robotics and AI in the healthcare field. This book, Robotics and Automation in Healthcare: Advanced Applications, explores these new technologies by focusing on important issues related to the employment of robotics and automation in healthcare, such as in medical diagnosis, treatment, and surgery. The volume reviews wireless charging of implantable pacemakers, considers smart bot design for library building of medical colleges, and discusses strain distribution in biomechanical systems. Other topics included in the book are medical imaging, drone technology, 3D printing, and image processing techniques. The application and importance of actuators in medical devices, especially during surgery, is discussed, as are wearable devices for pre-identification of seizure development. The volume also looks at a decision support system for detection of suitable robots and early detection of diseases with the support of image processing techniques. The application of nano-robots in healthcare is also explored. Providing advanced information and insight into robotics, wearable devices, and applications of image processing in healthcare field, this volume will be helpful to those in communications and electronics engineering as well as those at the forefront of smart technology in healthcare.
Swarm intelligence is one of the fastest growing subfields of artificial intelligence and soft computing. This field includes multiple optimization algorithms to solve NP-hard problems for which conventional methods are not effective. It inspires researchers in engineering sciences to learn theories from nature and incorporate them. Swarm Intelligence: Foundation, Principles, and Engineering Applications provides a comprehensive review of new swarm intelligence techniques and offers practical implementation of Particle Swarm Optimization (PSO) with MATLAB code. The book discusses the statistical analysis of swarm optimization techniques so that researchers can analyse their experiment design. It also includes algorithms in social sectors, oil and gas industries, and recent research findings of new optimization algorithms in the field of engineering describing the implementation in machine learning. This book is written for students of engineering, research scientists, and academicians involved in the engineering sciences.