Download Free Smart Material Systems Book in PDF and EPUB Free Download. You can read online Smart Material Systems and write the review.

This book describes several novel applications currently under investigation that exploit the unique actuator and sensor capabilities of smart material compounds. In addition to present and projected applications, this book provides comprehensive coverage of both linear and nonlinear modeling techniques necessary to characterize materials in a manner that facilitates transducer design and control development. The author focuses on ferroelectric, magnetic, and shape memory compounds and also addresses applications exploiting amorphous and ionic polymers, magnetorheological compounds, and fiber optic sensors. By providing a unified treatment of both linear and nonlinear characterization frameworks, Smart Material Systems: Model Development encompasses both low to moderate drive levels, which constitute the primary focus of most present texts, and the high drive regimes dictated by present and future applications. This will significantly enhance the design of transducers and control systems which exploit the unique actuator and sensor capabilities provided by smart material compounds.
The book provides a pedagogical approach that emphasizes the physical processes of active materials and the design and control of engineering systems. It will also be a reference text for practicing engineers who might understand the basic principles of active materials but have an interest in learning more about specific applications. The text includes a number of worked examples, design problems, and homework problems (with a solutions manual) that will be useful for both instructors and practicing engineers.
Presenting unified coverage of the design and modeling of smart micro- and macrosystems, this book addresses fabrication issues and outlines the challenges faced by engineers working with smart sensors in a variety of applications. Part I deals with the fundamental concepts of a typical smart system and its constituent components. Preliminary fabrication and characterization concepts are introduced before design principles are discussed in detail. Part III presents a comprehensive account of the modeling of smart systems, smart sensors and actuators. Part IV builds upon the fundamental concepts to analyze fabrication techniques for silicon-based MEMS in more detail. Practicing engineers will benefit from the detailed assessment of applications in communications technology, aerospace, biomedical and mechanical engineering. The book provides an essential reference or textbook for graduates following a course in smart sensors, actuators and systems.
This textbook covers the fundamentals of different functional material systems aimed at advanced undergraduate and postgraduate students. Each chapter includes an introduction to the material, its applications and uses with example problems, fabrication and manufacturing techniques, conclusions, homework problems and a bibliography. Edited by a leading researcher in smart materials, topics include piezoelectric materials, magnetostrictive materials, shape memory alloys, mechanochromic materials, chemomechanical polymers and self-healing materials.
This book provides in-depth coverage of smart materials, including electroactive polymers (EAPs), synthetic muscle, pneumatic artificial muscle, soft pneumatics, hydro-muscle, and other cutting-edge transformational smart material technologies. It looks at ways smart materials respond to stimuli, such as electricity, pressure, temperature, magnetism, or light. State-of-the-art developments in EAP based actuation and pneumatics are covered, including nanotechnology, soft robotics, EAP considerations for NASA applications and thermal control of satellites, control of mirrors using dielectric elastomeric actuators, and biomimetic design and function in robotics and prosthetics. A detailed analysis of the challenges of smart materials on Earth and in space is included, with an interview about considerations and training for Missions to Moon and Mars. This book is a must-read within the smart material and space communities, from tech savvy students to industry professionals.
The use of smart materials in architecture is a dynamic and innovative area merging research, development, and use. Smart materials, with their reversible characteristics, respond to stimuli such as light, temperature, and electrical field by changing their form, color, viscosity, etc. One of the most fascinating developments is the advent of Phase Change Materials. These materials make it possible, for example, to develop self-acting, kinetic facades and wallpaper that changes its color and pattern based on temperature and light. The book presents the development of these materials and also describes their use in the contexts of architecture, design, and art. It offers a systematic overview with a detailed discussion of properties, technologies, products, and projects based on twenty groups of smart materials.
Smart materials stimulated by chemical or biological signals are of interest for their many applications including drug delivery, as well as in new sensors and actuators for environmental monitoring, process and food control, and medicine. In contrast to other books on responsive materials, this volume concentrates on materials which are stimulated by chemical or biological signals. Chemoresponsive Materials introduces the area with chapters covering different responsive material systems including hydrogels, organogels, membranes, thin layers, polymer brushes, chemomechanical and imprinted polymers, nanomaterials, silica particles, as well as carbohydrate- and bio-based systems. Many promising applications are highlighted, with an emphasis on drug delivery, sensors and actuators. With contributions from internationally known experts, the book will appeal to graduate students and researchers in academia, healthcare and industry interested in functional materials and their applications.
This work was compiled with expanded and reviewed contributions from the 7th ECCOMAS Thematic Conference on Smart Structures and Materials, that was held from 3 to 6 June 2015 at Ponta Delgada, Azores, Portugal. The Conference provided a comprehensive forum for discussing the current state of the art in the field as well as generating inspiration for future ideas specifically on a multidisciplinary level. The scope of the Conference included topics related to the following areas: Fundamentals of smart materials and structures; Modeling/formulation and characterization of smart actuators, sensors and smart material systems; Trends and developments in diverse areas such as material science including composite materials, intelligent hydrogels, interfacial phenomena, phase boundaries and boundary layers of phase boundaries, control, micro- and nano-systems, electronics, etc. to be considered for smart systems; Comparative evaluation of different smart actuators and sensors; Analysis of structural concepts and designs in terms of their adaptability to smart technologies; Design and development of smart structures and systems; Biomimetic phenomena and their inspiration in engineering; Fabrication and testing of smart structures and systems; Applications of smart materials, structures and related technology; Smart robots; Morphing wings and smart aircrafts; Artificial muscles and biomedical applications; Smart structures in mechatronics; and Energy harvesting.
Explores State-of-the-Art Work from the World's Foremost Scientists, Engineers, Educators, and Practitioners in the FieldWhy use smart materials?Since most smart materials do not add mass, engineers can endow structures with built-in responses to a myriad of contingencies. In their various forms, these materials can adapt to their environments by c
In the last two decades, a great effort has been directed towards the development of new smart materials actuators and their corresponding application devices and systems. Currently, some smart materials actuators are commercially applied for several technologies including automotive technology, but some of the smart materials actuators are still far from meeting strict practical requirements such as reliability, cost-effectiveness and robustness against unexpected environment conditions. Therefore, it is timely and appropriate to present recent research on smart materials actuators in terms of material characterization and advanced application systems in a single book. This book describes smart materials actuator technology from materials characterizations to device or system applications. The smart materials introduced in this book include magnetorehological fluid (MRF), magnetorheological elastomer (MRE), electrorheological fluid (ERF), piezoelectric material (PM), shape memory ally (SMA), dielectric elastomer (DE) and ionic polymer (IP). Both physical and chemical characterizations of each smart material are described in details in terms of actuating aspect. In addition, several application devices utilizing each smart material are introduced to provide practical controllability as a potential candidate for new actuators. The application devices introduced in this book include MRF damper for automotive suspension, PM unimorph pump for micro-hydraulic system, MRE flexible structure for vibration control, IP biomimetic micro-robot and SMA civil structure and damper system for vibration attenuation.