Download Free Smart Cities And Machine Learning In Urban Health Book in PDF and EPUB Free Download. You can read online Smart Cities And Machine Learning In Urban Health and write the review.

The perception of smart cities encompasses a strategy that uses different types of technologies, artificial intelligence (AI), and machine learning and in which, through the internet of things (IoT) and sensor-based data collection, the strategy extrapolates information using insights gained from that data to manage or monitor or track assets, resources, and services efficiently in an urban area. Both these models deeply affect the localities where they are applied and can create together immense possibilities for urban recovery, better quality of life, physical and mental health protection, and economic and social redevelopment. Smart Cities and Machine Learning in Urban Health promotes interdisciplinary work that develops and illustrates the concept of resilience in relation to smart city and machine learning. The book examines the ability of an area and its communities to recover quickly from difficulties; the rigidness and resistance of an area and its communities to possible crisis; the ability of an area, its communities, infrastructure, and business to spring back into shape; and the responsiveness and mitigation towards the crisis with a special look at the impact of the COVID-19 pandemic. The research's theoretical foundation rests on a wide range of non-architectural sources, primarily AI, sociology, urban studies, and technological development, but it explores everything on cases taken from real cities, thus transforming them into pieces of architectural interest. Covering topics such as carbon emissions, digital healthcare systems, and urban transformation, this book is an essential resource for graduate and post-graduate students, policymakers, researchers, university faculty, engineers, public management, hospital administration, professors, and academicians.
The perception of smart cities encompasses a strategy that uses different types of technologies, artificial intelligence (AI), and machine learning and in which, through the internet of things (IoT) and sensor-based data collection, the strategy extrapolates information using insights gained from that data to manage or monitor or track assets, resources, and services efficiently in an urban area. Both these models deeply affect the localities where they are applied and can create together immense possibilities for urban recovery, better quality of life, physical and mental health protection, and economic and social redevelopment. Smart Cities and Machine Learning in Urban Health promotes interdisciplinary work that develops and illustrates the concept of resilience in relation to smart city and machine learning. The book examines the ability of an area and its communities to recover quickly from difficulties; the rigidness and resistance of an area and its communities to possible crisis; the ability of an area, its communities, infrastructure, and business to spring back into shape; and the responsiveness and mitigation towards the crisis with a special look at the impact of the COVID-19 pandemic. The research’s theoretical foundation rests on a wide range of non-architectural sources, primarily AI, sociology, urban studies, and technological development, but it explores everything on cases taken from real cities, thus transforming them into pieces of architectural interest. Covering topics such as carbon emissions, digital healthcare systems, and urban transformation, this book is an essential resource for graduate and post-graduate students, policymakers, researchers, university faculty, engineers, public management, hospital administration, professors, and academicians.
Smart Cities and Artificial Intelligence offers a comprehensive view of how cities are evolving as smart ecosystems through the convergence of technologies incorporating machine learning and neural network capabilities, geospatial intelligence, data analytics and visualization, sensors, and smart connected objects. These recent advances in AI move us closer to developing urban operating systems that simulate human, machine, and environmental patterns from transportation infrastructure to communication networks. Exploring cities as real-time, living, dynamic systems, and providing tools and formats including generative design and living lab models that support cities to become self-regulating, this book provides readers with a conceptual and practical knowledge base to grasp and apply the key principles required in the planning, design, and operations of smart cities. Smart Cities and Artificial Intelligence brings a multidisciplinary, integrated approach, examining how the digital and physical worlds are converging, and how a new combination of human and machine intelligence is transforming the experience of the urban environment. It presents a fresh holistic understanding of smart cities through an interconnected stream of theory, planning and design methodologies, system architecture, and the application of smart city functions, with the ultimate purpose of making cities more liveable, sustainable, and self-sufficient.
Industrial informatics lies at the strategic intersection of multiple disciplines that can comprehensively realize a learning vision of smart cities. This book is ideal for academicians, researchers, authors, industry experts, software engineers, and students.
This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
This book presents the latest advances in computational intelligence and data analytics for sustainable future smart cities. It focuses on computational intelligence and data analytics to bring together the smart city and sustainable city endeavors. It also discusses new models, practical solutions and technological advances related to the development and the transformation of cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners.
This book offers an essential guide to IoT Security, Smart Cities, IoT Applications, etc. In addition, it presents a structured introduction to the subject of destination marketing and an exhaustive review on the challenges of information security in smart and intelligent applications, especially for IoT and big data contexts. Highlighting the latest research on security in smart cities, it addresses essential models, applications, and challenges. Written in plain and straightforward language, the book offers a self-contained resource for readers with no prior background in the field. Primarily intended for students in Information Security and IoT applications (including smart cities systems and data heterogeneity), it will also greatly benefit academic researchers, IT professionals, policymakers and legislators. It is well suited as a reference book for both undergraduate and graduate courses on information security approaches, the Internet of Things, and real-world intelligent applications.
A bold reassessment of "smart cities" that reveals what is lost when we conceive of our urban spaces as computers Computational models of urbanism—smart cities that use data-driven planning and algorithmic administration—promise to deliver new urban efficiencies and conveniences. Yet these models limit our understanding of what we can know about a city. A City Is Not a Computer reveals how cities encompass myriad forms of local and indigenous intelligences and knowledge institutions, arguing that these resources are a vital supplement and corrective to increasingly prevalent algorithmic models. Shannon Mattern begins by examining the ethical and ontological implications of urban technologies and computational models, discussing how they shape and in many cases profoundly limit our engagement with cities. She looks at the methods and underlying assumptions of data-driven urbanism, and demonstrates how the "city-as-computer" metaphor, which undergirds much of today's urban policy and design, reduces place-based knowledge to information processing. Mattern then imagines how we might sustain institutions and infrastructures that constitute more diverse, open, inclusive urban forms. She shows how the public library functions as a steward of urban intelligence, and describes the scales of upkeep needed to sustain a city's many moving parts, from spinning hard drives to bridge repairs. Incorporating insights from urban studies, data science, and media and information studies, A City Is Not a Computer offers a visionary new approach to urban planning and design.
This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.
Artificial and Cognitive Computing for Sustainable Healthcare Systems in Smart Cities delves into the transformative potential of artificial and cognitive computing in the realm of healthcare systems, maintaining a specific emphasis on sustainability. By exploring the integration of advanced technologies in smart cities, the authors examine and discuss how AI and cognitive computing can be harnessed to enhance healthcare delivery. The book provides focused navigation through innovative solutions and strategies that contribute to the creation of sustainable healthcare ecosystems within the dynamic environment of smart cities. From optimizing resource utilization to improving patient outcomes, this comprehensive exploration provides insight for readers with an interest in the future of healthcare within the era of intelligent urban development.