Download Free Smart Agricultural Services Using Deep Learning Big Data And Iot Book in PDF and EPUB Free Download. You can read online Smart Agricultural Services Using Deep Learning Big Data And Iot and write the review.

The agricultural sector can benefit immensely from developments in the field of smart farming. However, this research area focuses on providing specific fixes to particular situations and falls short on implementing data-driven frameworks that provide large-scale benefits to the industry as a whole. Using deep learning can bring immense data and improve our understanding of various earth sciences and improve farm services to yield better crop production and profit. Smart Agricultural Services Using Deep Learning, Big Data, and IoT is an essential publication that focuses on the application of deep learning to agriculture. While highlighting a broad range of topics including crop models, cybersecurity, and sustainable agriculture, this book is ideally designed for engineers, programmers, software developers, agriculturalists, farmers, policymakers, researchers, academicians, and students.
This book endeavours to highlight the untapped potential of Smart Agriculture for the innovation and expansion of the agriculture sector. The sector shall make incremental progress as it learns from associations between data over time through Artificial Intelligence, deep learning and Internet of Things applications. The farming industry and Smart agriculture develop from the stringent limits imposed by a farm's location, which in turn has a series of related effects with respect to supply chain management, food availability, biodiversity, farmers' decision-making and insurance, and environmental concerns among others. All of the above-mentioned aspects will derive substantial benefits from the implementation of a data-driven approach under the condition that the systems, tools and techniques to be used have been designed to handle the volume and variety of the data to be gathered. Contributions to this book have been solicited with the goal of uncovering the possibilities of engaging agriculture with equipped and effective profound learning algorithms. Most agricultural research centres are already adopting Internet of Things for the monitoring of a wide range of farm services, and there are significant opportunities for agriculture administration through the effective implementation of Machine Learning, Deep Learning, Big Data and IoT structures.
AI, Edge, and IoT Smart Agriculture integrates applications of IoT, edge computing, and data analytics for sustainable agricultural development and introduces Edge of Thing-based data analytics and IoT for predictability of crop, soil, and plant disease occurrence for improved sustainability and increased profitability. The book also addresses precision irrigation, precision horticulture, greenhouse IoT, livestock monitoring, IoT ecosystem for agriculture, mobile robot for precision agriculture, energy monitoring, storage management, and smart farming. The book provides an overarching focus on sustainable environment and sustainable economic development through smart and e-agriculture. Providing a medium for the exchange of expertise and inspiration, contributions from both smart agriculture and data mining researchers around the world provide foundational insights. The book provides practical application opportunities for the resolution of real-world problems, including contributions from the data mining, data analytics, Edge of Things, and cloud research communities working in the farming production sector. The book offers broad coverage of the concepts, themes, and instruments of this important and evolving area of IOT-based agriculture, Edge of Things and cloud-based farming, Greenhouse IOT, mobile agriculture, sustainable agriculture, and big data analytics in agriculture toward smart farming. - Integrates sustainable agriculture, Greenhouse IOT, precision agriculture, crops monitoring, crops controlling to prediction, livestock monitoring, and farm management - Presents data mining techniques for precision agriculture, including weather prediction, plant disease prediction, and decision support for crop and soil selection - Promotes the importance and uses in managing the agro ecosystem for food security - Emphasizes low energy usage options for low cost and environmental sustainability
Deep learning includes a subset of machine learning for processing the unsupervised data with artificial neural network functions. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. When applied to engineering, deep learning can have a great impact on the decision-making process. Deep Learning Applications and Intelligent Decision Making in Engineering is a pivotal reference source that provides practical applications of deep learning to improve decision-making methods and construct smart environments. Highlighting topics such as smart transportation, e-commerce, and cyber physical systems, this book is ideally designed for engineers, computer scientists, programmers, software engineers, research scholars, IT professionals, academicians, and postgraduate students seeking current research on the implementation of automation and deep learning in various engineering disciplines.
Health Economics and Financing Encapsulates different case studies where green-IOT and machine learning can be used for making significant progress towards improvising the quality of life and sustainable environment. The Internet of Things (IoT) is an evolving idea which is responsible for connecting billions of devices that acquire, perceive, and communicate data from their surroundings. Because this transmission of data uses significant energy, improving energy efficiency in IOT devices is a significant topic for research. The green internet of things (G-IoT) makes it possible for IoT devices to use less energy since intelligent processing and analysis are fundamental to constructing smart IOT applications with large data sets. Machine learning (ML) algorithms that can predict sustainable energy consumption can be used to prepare guidelines to make IoT device implementation easier. Green Internet of Things and Machine Learning lays the foundation of in-depth analysis of principles of Green-Internet of Things (G-IoT) using machine learning. It outlines various green ICT technologies, explores the potential towards diverse real-time areas, as well as highlighting various challenges and obstacles towards the implementation of G-IoT in the real world. Also, this book provides insights on how the machine learning and green IOT will impact various applications: It covers the Green-IOT and ML-based smart computing, ML techniques for reducing energy consumption in IOT devices, case studies of G-IOT and ML in the agricultural field, smart farming, smart transportation, banking industry and healthcare. Audience The book will be helpful for research scholars and researchers in the fields of computer science and engineering, information technology, electronics and electrical engineering. Industry experts, particularly in R&D divisions, can use this book as their problem-solving guide.
The rise of technology in human culture has changed almost every facet of society. Technology is especially useful regarding sustainable development. These technologies can cause significant greenhouse gas reductions and other benefits in terms of logistics and smart cities. New technology applied in this way can greatly help the human effort to restore the environment. Disruptive Technologies and Eco-Innovation for Sustainable Development provides an in-depth look into the new techniques, strategies, and technologies for achieving environmental sustainability through best business and technology practices. The book covers topics such as eco-innovation, green criteria, Agriculture 4.0, and topics related to logic, philosophy, and history of science and technology from the green/sustainable point of view. It is essential for managers, academicians, scientists, students, and researchers in various government, public, and private sectors.
This book introduces to blockchain and deep learning and explores and illustrates the current and new trends that integrate them. The pace and speeds for connectivity are certain on the ascend. Blockchain and deep learning are twin technologies that are integral to integrity and relevance of network contents. Since they are data-driven technologies, rapidly growing interests exist to incorporate them in efficient and secure data sharing and analysis applications. Blockchain and deep learning are sentinel contemporary research technologies. This book provides a comprehensive reference for blockchain and deep learning by covering all important topics. It identifies the bedrock principles and forward projecting methodologies that illuminate the trajectory of developments for the decades ahead.
As technology continues to saturate modern society, agriculture has started to adopt digital computing and data-driven innovations. This emergence of “smart” farming has led to various advancements in the field, including autonomous equipment and the collection of climate, livestock, and plant data. As connectivity and data management continue to revolutionize the farming industry, empirical research is a necessity for understanding these technological developments. Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture provides emerging research exploring the theoretical and practical aspects of critical technological solutions within the farming industry. Featuring coverage on a broad range of topics such as crop monitoring, precision livestock farming, and agronomic data processing, this book is ideally designed for farmers, agriculturalists, product managers, farm holders, manufacturers, equipment suppliers, industrialists, governmental professionals, researchers, academicians, and students seeking current research on technological applications within agriculture and farming.
This book addresses the topics related to artificial intelligence, the Internet of Things, blockchain technology, and machine learning. It brings together researchers, developers, practitioners, and users interested in cybersecurity and forensics. The first objective is to learn and understand the need for and impact of advanced cybersecurity and forensics and its implementation with multiple smart computational technologies. This objective answers why and how cybersecurity and forensics have evolved as one of the most promising and widely-accepted technologies globally and has widely-accepted applications. The second objective is to learn how to use advanced cybersecurity and forensics practices to answer computational problems where confidentiality, integrity, and availability are essential aspects to handle and answer. This book is structured in such a way so that the field of study is relevant to each reader’s major or interests. It aims to help each reader see the relevance of cybersecurity and forensics to their career or interests. This book intends to encourage researchers to develop novel theories to enrich their scholarly knowledge to achieve sustainable development and foster sustainability. Readers will gain valuable knowledge and insights about smart computing technologies using this exciting book. This book: • Includes detailed applications of cybersecurity and forensics for real-life problems • Addresses the challenges and solutions related to implementing cybersecurity in multiple domains of smart computational technologies • Includes the latest trends and areas of research in cybersecurity and forensics • Offers both quantitative and qualitative assessments of the topics Includes case studies that will be helpful for the researchers Prof. Keshav Kaushik is Assistant Professor in the Department of Systemics, School of Computer Science at the University of Petroleum and Energy Studies, Dehradun, India. Dr. Shubham Tayal is Assistant Professor at SR University, Warangal, India. Dr. Akashdeep Bhardwaj is Professor (Cyber Security & Digital Forensics) at the University of Petroleum & Energy Studies (UPES), Dehradun, India. Dr. Manoj Kumar is Assistant Professor (SG) (SoCS) at the University of Petroleum and Energy Studies, Dehradun, India.
This book covers a wide spectrum of water resources management, including water supply and demand, operation and maintenance of water distribution systems, water quality assessment, impacts of climate change on hydrological extremes, and water governance. Rapid urbanization, industrialization, and population growth are the major factors contributing to a significant rise in water demands across all the sectors in India. Although the Indian Summer Monsoon Rainfall contributes primarily to the available surface and groundwater resources, recurrent non-uniform/erratic rainfall events have resulted in widespread water scarcity. On many occasions, extreme meteorological conditions trigger the severity of water-related disasters such as floods and droughts. The untreated wastewater from domestic and industrial sources discharged through un-engineered means, adds to the issue as it ends up polluting the surface and groundwater resources.