Download Free Slam Techniques Application For Mobile Robot In Rough Terrain Book in PDF and EPUB Free Download. You can read online Slam Techniques Application For Mobile Robot In Rough Terrain and write the review.

This book presents the development of SLAM-based mobile robot control systems as an integrated approach that combines the localization, mapping and motion control fields, and reviews several techniques that represent the basics of the mathematical description of wheeled robots, their navigation and path planning approaches, localization and map creating techniques. It examines SLAM paradigms and Bayesian recursive state and map estimation techniques, which include Kalman and particle filtering, and enable the development of a SLAM-based integrated system for the inspection task performed. The system’s development is divided into two phases: a single-robot approach and multirobot inspection system. The book describes an original approach to 2D SLAM in multi-floor buildings that covers each 2D level map, as well as continuous 3D pose tracking, and views the multirobot inspection system as a group of homogeneous mobile robots. The last part of the book is dedicated to multirobot map creation and the development of path planning solutions, which allow the robots’ homogeneous behavior and configuration to be used to develop a multirobot system without theoretical limitations on the number of robots used.
By proposing and forming a mobile manipulator for modern multi-floor buildings, A Robotic Framework for the Mobile Manipulator: Theory and Application helps readers visualize an end-to-end workflow for making a robot system work in a targeted environment. From a product-oriented viewpoint, this book is considered as a bridge from theories to real products, in which robotic software modules and the robotic system integration are mainly concerned. In the end, readers will have an overview of how to build and integrate various single robotic modules to execute a list of designed tasks in the real world, as well as how to make a robot system work independently, without human interventions. With references and execution guidelines provided at the end of each chapter, the book will be a useful tool for developers and researchers looking to expand their knowledge about the robotics and the robotic software.
This book constitutes the proceedings of the 7th International Conference on Interactive Collaborative Robotics, ICR 2022, held in Fuzhou, China, in December 2022. The 25 papers presented were carefully reviewed and selected from 45 submissions. Challenges of human-robot interaction, robot control and behavior in social robotics and collaborative robotics, as well as applied robotic and cyber-physical systems are mainly discussed in the papers.
This book presents the set of papers accepted for presentation at the International Conference Automation, held in Warsaw, 2-4 March of 2016. It presents the research results presented by top experts in the fields of industrial automation, control, robotics and measurement techniques. Each chapter presents a thorough analysis of a specific technical problem which is usually followed by numerical analysis, simulation, and description of results of implementation of the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be valuable for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.
The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.
This double volume set ( LNAI 10863-10864) constitutes the refereed proceedings of the 25th International Workshop, EG-ICE 2018, held in Lausanne, Switzerland, in June 2018. The 58 papers presented in this volume were carefully reviewed and selected from 108 submissions. The papers are organized in topical sections on Advanced Computing in Engineering, Computer Supported Construction Management, Life-Cycle Design Support, Monitoring and Control Algorithms in Engineering, and BIM and Engineering Ontologies.
This book consists of papers presented at Automation 2017, an international conference held in Warsaw from March 15 to 17, 2017. It discusses research findings associated with the concepts behind INDUSTRY 4.0, with a focus on offering a better understanding of and promoting participation in the Fourth Industrial Revolution. Each chapter presents a detailed analysis of a specific technical problem, in most cases followed by a numerical analysis, simulation and description of the results of implementing the solution in a real-world context. The theoretical results, practical solutions and guidelines presented are valuable for both researchers working in the area of engineering sciences and practitioners looking for solutions to industrial problems.
This book gathers the proceedings of the 15th IFToMM World Congress, which was held in Krakow, Poland, from June 30 to July 4, 2019. Having been organized every four years since 1965, the Congress represents the world’s largest scientific event on mechanism and machine science (MMS). The contributions cover an extremely diverse range of topics, including biomechanical engineering, computational kinematics, design methodologies, dynamics of machinery, multibody dynamics, gearing and transmissions, history of MMS, linkage and mechanical controls, robotics and mechatronics, micro-mechanisms, reliability of machines and mechanisms, rotor dynamics, standardization of terminology, sustainable energy systems, transportation machinery, tribology and vibration. Selected by means of a rigorous international peer-review process, they highlight numerous exciting advances and ideas that will spur novel research directions and foster new multidisciplinary collaborations.