Download Free Size Effects In Engineering Mechanics Materials Science And Manufacturing Book in PDF and EPUB Free Download. You can read online Size Effects In Engineering Mechanics Materials Science And Manufacturing and write the review.

Size Effects in Engineering Mechanics and Manufacturing provides a detailed evaluation of size effects in mechanics, manufacturing and material sciences and their effects on related physical behaviors and phenomena. Sections address the physical aspects of size effects, including tension, compression, and bending deformation in mechanics, fatigue and damage behaviors, the mechanisms behind these effects, modeling techniques for determining the behavior and phenomena of size effects, practical applications of size effects in material sciences and micro-manufacturing, how size effects influence the process performance, process outcome, properties and quality of fabricated parts and components, and future size effects.This book provides not only a reference volume on size effects but also valuable applications for engineers, scientists, academics and research students involved in materials processing, manufacturing, materials science and engineering, engineering mechanics, mechanical engineering and the management of enterprises using materials processing technologies in the mass-production of related products. - Describes the physical aspects of size effects and provides the underlying theories and principles to explain the mechanisms behind them - Presents the practical applications of size effects in material sciences and micro-manufacturing and outlines the influence of process performance, process outcome, properties, and quality of fabricated parts and components - Provides guidelines to understand size effects in multi-scaled manufacturing process design and product development
Microfabrication and precision engineering is an increasingly important area relating to metallic, polymers, ceramics, composites, biomaterials and complex materials. Micro-electro-mechanical-systems (MEMS) emphasize miniaturization in both electronic and mechanical components. Microsystem products may be classified by application, and have been applied to a variety of fields, including medical, automotive, aerospace and alternative energy. Microsystems technology refers to the products as well as the fabrication technologies used in production. With detailed information on modelling of micro and nano-scale cutting, as well as innovative machining strategies involved in microelectrochemical applications, microchannel fabrication, as well as underwater pulsed Laser beam cutting, among other techniques, Microfabrication and Precision Engineering is a valuable reference for students, researchers and professionals in the microfabrication and precision engineering fields. - Contains contributions by top industry experts - Includes the latest techniques and strategies - Special emphasis given to state-of-the art research and development in microfabrication and precision engineering
Size Effects in Engineering Mechanics and Manufacturing provides a detailed evaluation of size effects in mechanics, manufacturing and material sciences and their effects on related physical behaviors and phenomena. Sections address the physical aspects of size effects, including tension, compression, and bending deformation in mechanics, fatigue and damage behaviors, the mechanisms behind these effects, modeling techniques for determining the behavior and phenomena of size effects, practical applications of size effects in material sciences and micro-manufacturing, how size effects influence the process performance, process outcome, properties and quality of fabricated parts and components, and future size effects. This book provides not only a reference volume on size effects but also valuable applications for engineers, scientists, academics and research students involved in materials processing, manufacturing, materials science and engineering, engineering mechanics, mechanical engineering and the management of enterprises using materials processing technologies in the mass-production of related products. Describes the physical aspects of size effects and provides the underlying theories and principles to explain the mechanisms behind them Presents the practical applications of size effects in material sciences and micro-manufacturing and outlines the influence of process performance, process outcome, properties, and quality of fabricated parts and components Provides guidelines to understand size effects in multi-scaled manufacturing process design and product development
Micro-Cutting: Fundamentals and Applications comprehensively covers the state of the art research and engineering practice in micro/nano cutting: an area which is becoming increasingly important, especially in modern micro-manufacturing, ultraprecision manufacturing and high value manufacturing. This book provides basic theory, design and analysis of micro-toolings and machines, modelling methods and techniques, and integrated approaches for micro-cutting. The fundamental characteristics, modelling, simulation and optimization of micro/nano cutting processes are emphasized with particular reference to the predictabilty, producibility, repeatability and productivity of manufacturing at micro and nano scales. The fundamentals of micro/nano cutting are applied to a variety of machining processes including diamond turning, micromilling, micro/nano grinding/polishing, ultraprecision machining, and the design and implementation of micro/nano cutting process chains and micromachining systems. Key features • Contains contributions from leading global experts • Covers the fundamental theory of micro-cutting • Presents applications in a variety of machining processes • Includes examples of how to implement and apply micro-cutting for precision and micro-manufacturing Micro-Cutting: Fundamentals and Applications is an ideal reference for manufacturing engineers, production supervisors, tooling engineers, planning and application engineers, as well as machine tool designers. It is also a suitable textbook for postgraduate students in the areas of micro-manufacturing, micro-engineering and advanced manufacturing methods.
The book presents a compilation of research on meso/microforming processes, and offers systematic and holistic knowledge for the physical realization of developed processes. It discusses practical applications in fabrication of meso/microscale metallic sheet-metal parts via sheet-metal meso/microforming. In addition, the book provides extensive and informative illustrations, tables, case studies, photos and figures to convey knowledge of sheet-metal meso/microforming for fabrication of meso/microscale sheet-metal products in an illustrated manner. Key Features • Presents complete analysis and discussion of micro sheet metal forming processes • Guides reader across the mechanics, failures, prediction of failures and tooling and prospective applications • Discusses definitions of multi-scaled metal forming, sheet-metal meso/microforming and the challenges in such domains • Includes meso/micro-scaled sheet-metal parts design from a micro-manufacturability perspective, process determination, tooling design, product quality analysis, insurance and control • Covers industrial application and examples
Modeling and machining are two terms closely related. The benefits of the application of modeling on machining are well known. The advances in technology call for the use of more sophisticated machining methods for the production of high-end components. In turn, more complex, more suitable, and reliable modeling methods are required. This book pertains to machining and modeling, but focuses on the special aspects of both. Many researchers in academia and industry, who are looking for ways to refine their work, make it more detailed, increase their accuracy and reliability, or implement new features, will gain access to knowledge in this book that is very scare to find elsewhere.
This book features state-of-the-art contributions in mathematical, experimental and numerical simulations in engineering sciences. The contributions in this book, which comprise twelve chapters, are organized in six sections spanning mechanical, aerospace, electrical, electronic, computer, materials, geotechnical and chemical engineering. Topics include metal micro-forming, compressible reactive flows, radio frequency circuits, barrier infrared detectors, fiber Bragg and long-period fiber gratings, semiconductor modelling, many-core architecture computers, laser processing of materials, alloy phase decomposition, nanofluids, geo-materials and rheo-kinetics. Contributors are from Europe, China, Mexico, Malaysia and Iran. The chapters feature many sophisticated approaches including Monte Carlo simulation, FLUENT and ABAQUS computational modelling, discrete element modelling and partitioned frequency-time methods. The book will be of interest to researchers and also consultants engaged in many areas of engineering simulation.
Selected, peer reviewed papers from the 2014 International Conference on Advanced Engineering Materials and Architecture Science (ICAEMAS 2014), January 4-5, 2014, Xi’an, Shaanxi, China
Presenting papers from the 2013 annual meeting of The Minerals, Metals & Materials Society (TMS), this volume covers developments in all aspects of high temperature electrochemistry, from the fundamental to the empirical and from the theoretical to the applied.
This new volume examines important research on advancements in materials and manufacturing processes, focusing on characterization and applications and defining solutions to current issues as well as for inspiration for future innovation. It looks at areas including material characterization using modern technologies, process characterization, and more. The diverse selection of topics includes additive manufacturing for medical implants and medical image processing, characterization of composite materials using natural and synthetic fibers, 3D and 4D printing technologies and applications, biodegradable packaging materials, manufacturing and processing of materials for novel drug delivery systems, and more.