Download Free Size Distribution Of Radon Daughter Particles In Uranium Mine Atmospheres Book in PDF and EPUB Free Download. You can read online Size Distribution Of Radon Daughter Particles In Uranium Mine Atmospheres and write the review.

The organic, inorganic, and radiological characteristics of airborne aerosols have been measured as a function of particle size in controlled atmosphere test chambers and operating uranium mines. Concentrations of benzo(a)pyrene in two mines ranged from 26 to 57 ng/m3 of air. The carbon chain length of adsorbed n-alkanes was correlated with particle size. Normal mining activities produced an ore dust aerosol with mass median aerodynamic diameter (MMAD) greater than 2 .mu.m. The elements Na, Al, Si, K, Ca, Ti, V, Fe, and U exhibited elemental ratios similar to bulk ore and had comparable MMAD's. The S, Zn, and Pb were higher in aerosols than bulk ore and were associated with smaller MMAD particulates. Radon daughter particle size distributions were influenced by the kinds of particulates generated in mining activity.
Studies of underground miners have provided a wealth of data about the risk of lung cancer from exposure to radon's progeny elements, but the application of the miner data to the home environment is not straightforward. In Comparative Dosimetry of Radon in Mines and Homes, an expert committee uses a new dosimetric model to extrapolate to the home environment the risk relationships found in the miner studies. Important new scaling factors are developed for applying risk estimates based on miner data to men, women, and children in domestic environments. The book includes discussions of radon dosimetry and the uncertainties concerning other risk factors such as age and smoking habits. The book also contains a thorough technical discussion of the characteristics of radioactive aerosols in domestic environments, the dose of inhaled radon progeny to different age groups, identification of respiratory tract cells at the greatest risk of carcinogenesis, and a complete description of the new lung dose model being developed by the International Commission on Radiological Protection as modified by this committee.
This book describes hazards from radon progeny and other alpha-emitters that humans may inhale or ingest from their environment. In their analysis, the authors summarize in one document clinical and epidemiological evidence, the results of animal studies, research on alpha-particle damage at the cellular level, metabolic pathways for internal alpha-emitters, dosimetry and microdosimetry of radionuclides deposited in specific tissues, and the chemical toxicity of some low-specific-activity alpha-emitters. Techniques for estimating the risks to humans posed by radon and other internally deposited alpha-emitters are offered, along with a discussion of formulas, models, methods, and the level of uncertainty inherent in the risk estimates.