Download Free Six Degrees The Science Of A Connected Age Book in PDF and EPUB Free Download. You can read online Six Degrees The Science Of A Connected Age and write the review.

Watts, one of the principal architects of network theory, sets out to explain the innovative research that he and other scientists are spearheading to create a blueprint of this connected planet.
The pioneering young scientist whose work on the structure of small worlds has triggered an avalanche of interest in networks. In this remarkable book, Duncan Watts, one of the principal architects of network theory, sets out to explain the innovative research that he and other scientists are spearheading to create a blueprint of our connected planet. Whether they bind computers, economies, or terrorist organizations, networks are everywhere in the real world, yet only recently have scientists attempted to explain their mysterious workings. From epidemics of disease to outbreaks of market madness, from people searching for information to firms surviving crisis and change, from the structure of personal relationships to the technological and social choices of entire societies, Watts weaves together a network of discoveries across an array of disciplines to tell the story of an explosive new field of knowledge, the people who are building it, and his own peculiar path in forging this new science.
Everyone knows the small-world phenomenon: soon after meeting a stranger, we are surprised to discover that we have a mutual friend, or we are connected through a short chain of acquaintances. In his book, Duncan Watts uses this intriguing phenomenon--colloquially called "six degrees of separation"--as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network? The networks of this story are everywhere: the brain is a network of neurons; organisations are people networks; the global economy is a network of national economies, which are networks of markets, which are in turn networks of interacting producers and consumers. Food webs, ecosystems, and the Internet can all be represented as networks, as can strategies for solving a problem, topics in a conversation, and even words in a language. Many of these networks, the author claims, will turn out to be small worlds. How do such networks matter? Simply put, local actions can have global consequences, and the relationship between local and global dynamics depends critically on the network's structure. Watts illustrates the subtleties of this relationship using a variety of simple models---the spread of infectious disease through a structured population; the evolution of cooperation in game theory; the computational capacity of cellular automata; and the sychronisation of coupled phase-oscillators. Watts's novel approach is relevant to many problems that deal with network connectivity and complex systems' behaviour in general: How do diseases (or rumours) spread through social networks? How does cooperation evolve in large groups? How do cascading failures propagate through large power grids, or financial systems? What is the most efficient architecture for an organisation, or for a communications network? This fascinating exploration will be fruitful in a remarkable variety of fields, including physics and mathematics, as well as sociology, economics, and biology.
Celebrated scientists Nicholas Christakis and James Fowler explain the amazing power of social networks and our profound influence on one another's lives. Your colleague's husband's sister can make you fat, even if you don't know her. A happy neighbor has more impact on your happiness than a happy spouse. These startling revelations of how much we truly influence one another are revealed in the studies of Dr. Christakis and Fowler, which have repeatedly made front-page news nationwide. In Connected, the authors explain why emotions are contagious, how health behaviors spread, why the rich get richer, even how we find and choose our partners. Intriguing and entertaining, Connected overturns the notion of the individual and provides a revolutionary paradigm-that social networks influence our ideas, emotions, health, relationships, behavior, politics, and much more. It will change the way we think about every aspect of our lives.
The best-selling guide to network science, the revolutionary field that reveals the deep links between all forms of human social life A cocktail party. A terrorist cell. Ancient bacteria. An international conglomerate. All are networks, and all are a part of a surprising scientific revolution. In Linked, Albert-Lálórabá, the nation's foremost expert in the new science of networks, takes us on an intellectual adventure to prove that social networks, corporations, and living organisms are more similar than previously thought. Barabá shows that grasping a full understanding of network science will someday allow us to design blue-chip businesses, stop the outbreak of deadly diseases, and influence the exchange of ideas and information. Just as James Gleick and the Erdos-Réi model brought the discovery of chaos theory to the general public, Linked tells the story of the true science of the future and of experiments in statistical mechanics on the internet, all vital parts of what would eventually be called the Barabá-Albert model.
Why is the Mona Lisa the most famous painting in the world? Why did Facebook succeed when other social networking sites failed? Did the surge in Iraq really lead to less violence? And does higher pay incentivize people to work harder? If you think the answers to these questions are a matter of common sense, think again. As sociologist and network science pioneer Duncan Watts explains in this provocative book, the explanations that we give for the outcomes that we observe in life-explanations that seem obvious once we know the answer-are less useful than they seem. Watts shows how commonsense reasoning and history conspire to mislead us into thinking that we understand more about the world of human behavior than we do; and in turn, why attempts to predict, manage, or manipulate social and economic systems so often go awry. Only by understanding how and when common sense fails can we improve how we plan for the future, as well as understand the present-an argument that has important implications in politics, business, marketing, and even everyday life.
In astonishing and unflinching detail, a noted science journalist explains how Earth's climate will be impacted with every degree of increase in global warming--and what can be done about it now.
From the Internet to networks of friendship, disease transmission, and even terrorism, the concept--and the reality--of networks has come to pervade modern society. But what exactly is a network? What different types of networks are there? Why are they interesting, and what can they tell us? In recent years, scientists from a range of fields--including mathematics, physics, computer science, sociology, and biology--have been pursuing these questions and building a new "science of networks." This book brings together for the first time a set of seminal articles representing research from across these disciplines. It is an ideal sourcebook for the key research in this fast-growing field. The book is organized into four sections, each preceded by an editors' introduction summarizing its contents and general theme. The first section sets the stage by discussing some of the historical antecedents of contemporary research in the area. From there the book moves to the empirical side of the science of networks before turning to the foundational modeling ideas that have been the focus of much subsequent activity. The book closes by taking the reader to the cutting edge of network science--the relationship between network structure and system dynamics. From network robustness to the spread of disease, this section offers a potpourri of topics on this rapidly expanding frontier of the new science.
Are all film stars linked to Kevin Bacon? Why do the stock markets rise and fall sharply on the strength of a vague rumour? How does gossip spread so quickly? Are we all related through six degrees of separation? There is a growing awareness of the complex networks that pervade modern society. We see them in the rapid growth of the internet, the ease of global communication, the swift spread of news and information, and in the way epidemics and financial crises develop with startling speed and intensity. This introductory book on the new science of networks takes an interdisciplinary approach, using economics, sociology, computing, information science and applied mathematics to address fundamental questions about the links that connect us, and the ways that our decisions can have consequences for others.
Since the first edition of this landmark book was published in 1962, Everett Rogers's name has become "virtually synonymous with the study of diffusion of innovations," according to Choice. The second and third editions of Diffusion of Innovations became the standard textbook and reference on diffusion studies. Now, in the fourth edition, Rogers presents the culmination of more than thirty years of research that will set a new standard for analysis and inquiry. The fourth edition is (1) a revision of the theoretical framework and the research evidence supporting this model of diffusion, and (2) a new intellectual venture, in that new concepts and new theoretical viewpoints are introduced. This edition differs from its predecessors in that it takes a much more critical stance in its review and synthesis of 5,000 diffusion publications. During the past thirty years or so, diffusion research has grown to be widely recognized, applied and admired, but it has also been subjected to both constructive and destructive criticism. This criticism is due in large part to the stereotyped and limited ways in which many diffusion scholars have defined the scope and method of their field of study. Rogers analyzes the limitations of previous diffusion studies, showing, for example, that the convergence model, by which participants create and share information to reach a mutual understanding, more accurately describes diffusion in most cases than the linear model. Rogers provides an entirely new set of case examples, from the Balinese Water Temple to Nintendo videogames, that beautifully illustrate his expansive research, as well as a completely revised bibliography covering all relevant diffusion scholarship in the past decade. Most important, he discusses recent research and current topics, including social marketing, forecasting the rate of adoption, technology transfer, and more. This all-inclusive work will be essential reading for scholars and students in the fields of communications, marketing, geography, economic development, political science, sociology, and other related fields for generations to come.