Download Free Situational Method Engineering For The Enactment Of Method Centric Domain Specific Languages Book in PDF and EPUB Free Download. You can read online Situational Method Engineering For The Enactment Of Method Centric Domain Specific Languages and write the review.

Over the last decade, Method Engineering, defined as the engineering discipline to design, construct and adapt methods, including supportive tools, has emerged as the research and application area for using methods for systems development. This book contains the papers from the IFIP Working Group 8.1 conference on Situational Method Engineering.
While previously available methodologies for software – like those published in the early days of object technology – claimed to be appropriate for every conceivable project, situational method engineering (SME) acknowledges that most projects typically have individual characteristics and situations. Thus, finding the most effective methodology for a particular project needs specific tailoring to that situation. Such a tailored software development methodology needs to take into account all the bits and pieces needed for an organization to develop software, including the software process, the input and output work products, the people involved, the languages used to describe requirements, design, code, and eventually also measures of success or failure. The authors have structured the book into three parts. Part I deals with all the basic concepts, terminology and overall ideas underpinning situational method engineering. As a summary of this part, they present a formal meta-model that enables readers to create their own quality methods and supporting tools. In Part II, they explain how to implement SME in practice, i.e., how to find method components and put them together and how to evaluate the resulting method. For illustration, they also include several industry case studies of customized or constructed processes, highlighting the impact that high-quality engineered methods can have on the success of an industrial software development. Finally, Part III summarizes some of the more recent and forward-looking ideas. This book presents the first summary of the state of the art for SME. For academics, it provides a comprehensive conceptual framework and discusses new research areas. For lecturers, thanks to its step-by-step explanations from basics to the customization and quality assessment of constructed methods, it serves as a solid basis for comprehensive courses on the topic. For industry methodologists, it offers a reference guide on features and technologies to consider when developing in-house software development methods or customising and adopting off-the-shelf ones.
This book constitutes the refereed proceedings of the 4th IFIP WG 8.1 Working Conference on Method Engineering, ME 2011, held in Paris, France, in April 2011. The 13 revised full papers and 6 short papers presented together with the abstracts of two keynote talks were carefully reviewed and selected from 30 submissions. The papers are organized in topical sections on situated method engineering, method engineering foundations, customized methods, tools for method engineering, new trends to build methods, and method engineering services.
"This book presents current research on all aspects of domain-specific language for scholars and practitioners in the software engineering fields, providing new results and answers to open problems in DSL research"--
Software practitioners are rapidly discovering the immense value of Domain-Specific Languages (DSLs) in solving problems within clearly definable problem domains. Developers are applying DSLs to improve productivity and quality in a wide range of areas, such as finance, combat simulation, macro scripting, image generation, and more. But until now, there have been few practical resources that explain how DSLs work and how to construct them for optimal use. Software Language Engineering fills that need. Written by expert DSL consultant Anneke Kleppe, this is the first comprehensive guide to successful DSL design. Kleppe systematically introduces and explains every ingredient of an effective language specification, including its description of concepts, how those concepts are denoted, and what those concepts mean in relation to the problem domain. Kleppe carefully illuminates good design strategy, showing how to maximize the flexibility of the languages you create. She also demonstrates powerful techniques for creating new DSLs that cooperate well with general-purpose languages and leverage their power. Completely tool-independent, this book can serve as the primary resource for readers using Microsoft DSL tools, the Eclipse Modeling Framework, openArchitectureWare, or any other DSL toolset. It contains multiple examples, an illustrative running case study, and insights and background information drawn from Kleppe’s leading-edge work as a DSL researcher. Specific topics covered include Discovering the types of problems that DSLs can solve, and when to use them Comparing DSLs with general-purpose languages, frameworks, APIs, and other approaches Understanding the roles and tools available to language users and engineers Creating each component of a DSL specification Modeling both concrete and abstract syntax Understanding and describing language semantics Defining textual and visual languages based on object-oriented metamodeling and graph transformations Using metamodels and associated tools to generate grammars Integrating object-oriented modeling with graph theory Building code generators for new languages Supporting multilanguage models and programs This book provides software engineers with all the guidance they need to create DSLs that solve real problems more rapidly, and with higher-quality code.
This textbook describes the theory and the pragmatics of using and engineering high-level software languages - also known as modeling or domain-specific languages (DSLs) - for creating quality software. This includes methods, design patterns, guidelines, and testing practices for defining the syntax and the semantics of languages. While remaining close to technology, the book covers multiple paradigms and solutions, avoiding a particular technological silo. It unifies the modeling, the object-oriented, and the functional-programming perspectives on DSLs. The book has 13 chapters. Chapters 1 and 2 introduce and motivate DSLs. Chapter 3 kicks off the DSL engineering lifecycle, describing how to systematically develop abstract syntax by analyzing a domain. Chapter 4 addresses the concrete syntax, including the systematic engineering of context-free grammars. Chapters 5 and 6 cover the static semantics - with basic constraints as a starting point and type systems for advanced DSLs. Chapters 7 (Transformation), 8 (Interpretation), and 9 (Generation) describe different paradigms for designing and implementing the dynamic semantics, while covering testing and other kinds of quality assurance. Chapter 10 is devoted to internal DSLs. Chapters 11 to 13 show the application of DSLs and engage with simpler alternatives to DSLs in a highly distinguished domain: software variability. These chapters introduce the underlying notions of software product lines and feature modeling. The book has been developed based on courses on model-driven software engineering (MDSE) and DSLs held by the authors. It aims at senior undergraduate and junior graduate students in computer science or software engineering. Since it includes examples and lessons from industrial and open-source projects, as well as from industrial research, practitioners will also find it a useful reference. The numerous examples include code in Scala 3, ATL, Alloy, C#, F#, Groovy, Java, JavaScript, Kotlin, OCL, Python, QVT, Ruby, and Xtend. The book contains as many as 277 exercises. The associated code repository facilitates learning and using the examples in a course.