Download Free Site Specific Efficient And Stable Pegylation Book in PDF and EPUB Free Download. You can read online Site Specific Efficient And Stable Pegylation and write the review.

This volume provides an interdisciplinary analysis of current biological applications of poly(ethylene glycol) (PEG). It includes a wide array of topics useful to materials scientists, organic chemists, biochemists, and bioengineers interested in drug delivery systems, pharmaceuticals and other biomaterials. The applications discussed include PEG-modified proteins, liposomes, drugs, surfaces of materials, and hydrogels. The volume also includes a review of PEG-oligonucleotides and a concise summary of the toxicology of PEG and its derivatives.
PEGylation technology and key applications are introduced by this topical volume. Basic physical and chemical properties of PEG as basis for altering/improving in vivo behaviour of PEG-conjugates such as increased stability, improved PK/PD, and decreased immunogenicity, are discussed. Furthermore, chemical and enzymatic strategies for the coupling and the conjugate characterization are reported. Following chapters describe approved and marketed PEG-proteins and PEG-oligonucleotides as well as conjugates in various stages of clinical development.
Bioconjugate Techniques, 2nd Edition, is the essential guide to the modification and cross linking of biomolecules for use in research, diagnostics, and therapeutics. It provides highly detailed information on the chemistry, reagent systems, and practical applications for creating labeled or conjugate molecules. It also describes dozens of reactions with details on hundreds of commercially available reagents and the use of these reagents for modifying or cross linking peptides and proteins, sugars and polysaccharides, nucleic acids and oligonucleotides, lipids, and synthetic polymers. A one-stop source for proven methods and protocols for synthesizing bioconjugates in the lab Step-by-step presentation makes the book an ideal source for researchers who are less familiar with the synthesis of bioconjugates More than 600 figures that visually describe the complex reactions associated with the synthesis of bioconjugates Includes entirely new chapters on the latest areas in the field of bioconjugation as follows: Microparticles and nanoparticlesSilane coupling agentsDendrimers and dendronsChemoselective ligationQuantum dotsLanthanide chelatesCyanine dyesDiscrete PEG compoundsBuckyballs,fullerenes, and carbon nanotubesMass tags and isotope tagsBioconjugation in the study of protein interactions
In Vivo Glucose Sensing is a key reference for scientists and engineers working on the development of glucose sensing technologies for the management of diabetes and other medical conditions. It discusses the analytical chemistry behind the strategies currently used for measuring glucose in vivo. It focuses on analyzing samples in the real world and discusses the biological complexities that make glucose sensing difficult. Covering current implantable devices, next-generation implantable sensing methods, and non-invasive methods for measuring glucose, this book concludes with an overview of possible applications other than diabetes.
Polymer-Protein Conjugates: From Pegylation and Beyond helps researchers by offering a unique reference and guide into this fascinating area. Sections cover the challenges surrounding the homogeneity of conjugates, their purity and polymer toxicity on long-term use, and how to deal with the risk of immunogenicity. These discussions help researchers design new projects by taking into account the latest innovations for safe and site selective polymer conjugation to proteins. PEG has been the gold standard and likely will play this role for many years, but alternatives are coming into the market, some of which have already been launched. After five decades of improvements, the ideas in this book are entering into a new era of innovation because of the advances in genetic engineering, biochemistry and a better understanding of the results from clinical use of PEG conjugates in humans.
This book provides a comprehensive introduction to all aspects of enzyme engineering, from fundamental principles through to the state-of-the-art in research and industrial applications. It begins with a brief history, describing the milestones of advancement in enzyme science and technology, before going on to cover the fundamentals of enzyme chemistry, the biosynthesis of enzymes and their production. Enzyme stability and the reaction kinetics during enzymatic reactions are presented to show how enzymes function during catalysis and the factors that affect their activity. Methods to improve enzyme performance are also presented, such as cofactor regeneration and enzyme immobilization. The book emphasizes and elaborates on the performance and characteristics of enzymes at the molecular level. Finally, the book presents recent advances in enzyme engineering and some key industrial application of enzymes addressing the present needs of society. This book presents essential information not only for undergraduate and graduate students, but also for researchers in academia and industry, providing a valuable reference for the development of commercial applications of enzyme technology.
Following an overview on proteolytic enzyme assays, this text covers procedures on how to investigate and study proteases. It describes the use of specific restriction proteases as well as inhibitors of proteases to prevent unwanted proteolysis.
Engineering of Biomaterials for Drug Delivery Systems: Beyond Polyethylene Glycol examines the combined issues of PEGylation and viable biomaterials as alternatives. With a strong focus on polymeric biomaterials, the book first reviews the major issues associated with PEGylation and its use in vivo. Chapters then focus on alternative polymer systems for drug delivery systems. Finally, nanoparticles and future perspectives are examined. This book is a valuable resource for scientists and researchers in biomaterials, pharmaceuticals and nanotechnology, and all those who wish to broaden their knowledge in this field. - Provides a self-contained work for the field of biomaterials for drug delivery - Summarizes the current knowledge on PEGylation and strategies for bypassing it - Presents research on an important, though under-represented issue in biomaterials - Written by a world-class team of research scientists, engineers and clinicians
This comprehensive book encompasses various facets of sterile product development. Key concepts relevant to the successful development of sterile products are illustrated through case studies and are covered under three sections in this book: • Formulation approaches that discuss a variety of dosage forms including protein therapeutics, lipid-based controlled delivery systems, PEGylated biotherapeutics, nasal dosage form, and vaccines • Process, container closure and delivery considerations including freeze-thaw process challenges, best practices for technology transfer to enable commercial product development, innovations and advancement in aseptic fill-finish operations, approaches to manufacturing lyophilized parenteral products, pen / auto-injector delivery devices, and associated container closure integrity testing hurdles for sterile product closures • Regulatory and quality aspects in the areas of particulate matter and appearance evaluation, sterile filtration, admixture compatibility considerations, sterilization process considerations, microbial contamination investigations and validation of rapid microbiological methods, and dry and moist heat sterilizers This book is a useful resource to scientists and researchers in both industry and academia, and it gives process and product development engineers insight into current industry practices and evolving regulatory expectations for sterile product development.
Surface Chemistry of Nanobiomaterials brings together the most recent findings regarding the surface modification of currently used nanomaterials, which is a field that has become increasingly important during the last decade. This book enables the results of current research to reach those who wish to use this knowledge in an applied setting. Leading researchers from around the world present various types of nanobiomaterials, such as quantum dots (QDs), carbon nanotubes, silver nanoparticles, copper oxide, zinc oxide, magnesium oxide, magnetite, hydroxyapatite and graphene, and discuss their related functionalization strategies. This book will be of interest to postdoctoral researchers, professors and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians. - An up-to-date and highly structured reference source for researchers, practitioners and students working in biomedical, biotechnological and engineering fields - A valuable guide to recent scientific developments, covering major and emerging applications of nanomaterials in the biomedical field - Proposes novel opportunities and ideas for developing or improving technologies in nanomedicine and nanobiology