Download Free Sirtuin Biology In Medicine Book in PDF and EPUB Free Download. You can read online Sirtuin Biology In Medicine and write the review.

Sirtuin Biology in Cancer and Metabolic Disease: Cellular Pathways for Clinical Discovery offers a compelling and thought-provoking perspective for the examination of the intriguing biology of sirtuins that ties cancer and metabolic disease together and provides a critical platform for the development of sirtuin-based novel therapeutic strategies to effectively treat cancer and metabolic disorders with precision in order to minimize any potentially detrimental clinical outcomes. An exciting prospect for the development of innovative therapeutics for cancer and metabolic disorders involves sirtuins. Sirtuins are histone deacetylases that have an intricate role in the onset and development of cancer and metabolic disease. Implementing a translational medicine format, this innovative reference highlights the ability of sirtuins to oversee critical pathways that involve stem cell maintenance, cellular proliferation, metabolic homeostasis, apoptosis, and autophagy that can impact cellular dysfunction and unchecked cellular growth that can occur during cancer and metabolic disease. Each chapter offers an intuitive perspective of advances on the application of sirtuin pathways for cancer and metabolic disease that will be become a "go-to" resource for a broad audience of scientists, physicians, pharmaceutical industry experts, nutritionists, and students. Chapters are authored by internationally recognized experts who elucidate the intimate relationship between cancer and metabolic disease that intersects with sirtuin pathways Presents the basic and clinical role of sirtuins in regard to cancer and metabolic disease Summarizes the multidiscipline views and publications for this exciting field of sirtuins for the development of new clinical treatments for cancer and metabolic disease Provides a vital foundation for a broad audience of healthcare providers, scientists, drug developers, and students in both clinical and research settings
Introductory Review on Sirtuins in Biology and Disease provides key insights for scientists and advanced students who need to understand sirtuins and the current research in this field. This book is ideal for pharmaceutical companies as they develop novel targets using sirtuins for metabolic diseases, cancer and neurodegenerative illnesses. Sirtuins are a diverse family of proteins, with several members in mammals. The functional diversity of sirtuins is rather broad, and they have been implicated in various central biological processes. Thus, they are also highly relevant in the context of various human diseases, from cancer to neurodegeneration. - Covers both the general and specific aspects of sirtuin proteins and their role in biology, aging and disease - Presents a top quality collection of leading experts who contribute on a wide range of sirtuin-related topics - Ideal resource for pharmaceutical companies as they develop novel targets using sirtuins for metabolic diseases, cancer and neurodegenerative illnesses
The book highlights work from many different labs that taught us abnormal HDACs potentially contribute to the development or progression of many human diseases including immune dysfunctions, heart disease, cancer, memory impairment, aging, and metabolic disorders.
Sirtuin Biology in Medicine: Targeting New Avenues of Care in Development, Aging, and Disease provides a fascinating and in-depth analysis of sirtuins in the body during normal physiology as well during disease highlighting the targeting of sirtuin-controlled pathways for the development of innovative, efficacious, and safe therapeutic strategies for multiple disorders in the body that ultimately can affect lifespan extension. Sirtuins are expressed throughout the body, have broad biological effects, and can significantly impact both cellular survival and longevity during acute and long-term illnesses. These histone deacetylases play an intricate role in the pathology, progression, and treatment of several disease entities ranging from neurodegenerative disorders, cardiovascular disease, immune system dysfunction, reproductive dysfunction, endocrine disorders, gastrointestinal disease, drug dependency, and aging-related disorders. Implementing a translational medicine format, this unique reference highlights novel signaling pathways for sirtuins that promote stem cell proliferation, enhance cellular protection, modulate pathways of apoptosis and autophagy, and extend life span. Each chapter is presented with insightful detail that will be of interest and a comprehensive resource to audiences that include scientists, physicians, pharmaceutical industry experts, nutritionists, and students. - Chapters are authored by internationally recognized experts who discuss the broad role of sirtuins in health and disease - Details the basic and clinical role of sirtuins for the development of new clinical treatments - Summarizes the multidiscipline views and publications for the compelling discipline of sirtuins by covering systems throughout the body - Serves as an important resource for a broad audience of healthcare providers, scientists, drug developers, and students in both clinical and research settings
Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.
This multivolume reference work addresses the fact that the well being of humankind is predicated not only on individuals receiving adequate nutrition but also on their genetic makeup. The work includes more than 100 chapters organized in the following major sections: Introduction and Overview; Epigenetics of Organs and Diseases in Relation to Diet and Nutrition; Detailed Processes in Epigenetics of Diet and Nutrition; Modulating Epigenetics with Diet and Nutrition; and Practical Techniques. While it is well known that genes may encode proteins responsible for structural and dynamic components, there is an increasing body of evidence to suggest that nutrition itself may alter the way in which genes are expressed via the process of epigenetics. This is where chemically imposed alteration in the DNA sequence occurs or where the functional expression of DNA is modulated. This may include changes in DNA methylation, non-coding RNA, chromatin, histone acetylation or methylation, and genomic imprinting. Knowledge regarding the number of dietary components that impact on epigenetic processes is increasing almost daily. Marshalling all the information on the complex relationships between diet, nutrition, and epigenetic processes is somewhat difficult due to the wide myriad of material. It is for this reason that the present work has been compiled.
Recent years have seen spectacular advances in the field of circadian biology. These have attracted the interest of researchers in many fields, including endocrinology, neurosciences, cancer, and behavior. By integrating a circadian view within the fields of endocrinology and metabolism, researchers will be able to reveal many, yet-unsuspected aspects of how organisms cope with changes in the environment and subsequent control of homeostasis. This field is opening new avenues in our understanding of metabolism and endocrinology. A panel of the most distinguished investigators in the field gathered together to discuss the present state and the future of the field. The editors trust that this volume will be of use to those colleagues who will be picking up the challenge to unravel how the circadian clock can be targeted for the future development of specific pharmacological strategies toward a number of pathologies.
Epigenetics and Dermatology explores the role of epigenetics in the pathogenesis of autoimmune-related skin diseases and skin cancer. Leading contributors cover common and uncommon skin conditions in which extensive epigenetic research has been done. They explain how environmental exposures (chemicals, drugs, sunlight, diet, stress, smoking, infection, etc.) in all stages of life (from a fetus in-utero to an elderly person) may result in epigenetic changes that lead to development of some skin diseases in life. They also discuss the possibilities of new and emergent epigenetic treatments which are gradually being adopted in management of various skin diseases. Chapters follow a conventional structure, covering fundamental biology of the disease condition, etiology and pathogenesis, diagnosis, commonly available treatments, and epigenetic therapy where applicable. Discusses the basic biology of skin diseases and skin cancers induced or aggravated by aberrant epigenetic changes Evaluates how to approach autoimmune-related skin diseases from a therapeutic perspective using the wealth of emergent epigenetic clinical trials Offers a coherent and structured table of contents with basic epigenetic biology followed by discussion of the spectrum of rheumatologic through neoplastic skin diseases, finally ending with a discourse on epigenetic therapy
Stem cell science has the potential to impact human reproductive medicine significantly - cutting edge technologies allow the production and regeneration of viable gametes from human stem cells offering potential to preciously infertile patients. Written by leading experts in the field Stem Cells in Reproductive Medicine brings together chapters on the genetics and epigenetics of both the male and female gametes as well as advice on the production and regeneration of gene cells in men and women, trophoblasts and endometrium from human embryonic and adult stem cells. Although focussing mainly on the practical elements of the use of stem cells in reproductive medicine, the book also contains a section on new developments in stem cell research. The book is essential reading for reproductive medicine clinicians, gynecologists and embryologists who want to keep abreast of practical developments in this rapidly developing field.
Aging is a natural phenomenon that is peculiar to all living things. However, accumulating findings indicate that senescence could be postponed or prevented by certain approaches. Substantial evidence has emerged supporting the possibility of radical human health and lifespan extension, in particular through pharmacological modulation of aging. A number of natural dietary ingredients and synthetic drugs have been assumed to have geroprotective potential. In the development of anti-aging therapeutics, several cell, insect, and animal models may provide useful starting points prior to human studies. This book provides an overview of current research aimed to search for life-extending medications and describes pharmacological aspects of anti-aging medicine. Readers are introduced to the fascinating historical background of geroprotection in the first chapter. In-depth information on models for investigating geroprotective drugs precedes a section covering anti-aging properties of pharmaceutical compounds, such as calorie restriction mimetics, autophagy inducers, senolytics and mitochondrial antioxidants. Finally, strategies to translate discoveries from aging research into drugs and healthcare policy perspectives on anti-ageing medicine are provided to give a complete picture of the field. A timely and carefully edited collection of chapters by leading researchers in the field, this book will be a fascinating and useful resource for pharmacologists, gerontologists and any scientifically interested person wishing to know more about the current status of research into anti-aging remedies, challenges and opportunities.