Download Free Sinusoidal Analysis And Modeling Of Weakly Nonlinear Circuits Book in PDF and EPUB Free Download. You can read online Sinusoidal Analysis And Modeling Of Weakly Nonlinear Circuits and write the review.

An extraordinary combination of material science, manufacturing processes, and innovative thinking spurred the development of SiGe heterojunction devices that offer a wide array of functions, unprecedented levels of performance, and low manufacturing costs. While there are many books on specific aspects of Si heterostructures, the Silicon Heterostructure Handbook: Materials, Fabrication, Devices, Circuits, and Applications of SiGe and Si Strained-Layer Epitaxy is the first book to bring all aspects together in a single source. Featuring broad, comprehensive, and in-depth discussion, this handbook distills the current state of the field in areas ranging from materials to fabrication, devices, CAD, circuits, and applications. The editor includes "snapshots" of the industrial state-of-the-art for devices and circuits, presenting a novel perspective for comparing the present status with future directions in the field. With each chapter contributed by expert authors from leading industrial and research institutions worldwide, the book is unequalled not only in breadth of scope, but also in depth of coverage, timeliness of results, and authority of references. It also includes a foreword by Dr. Bernard S. Meyerson, a pioneer in SiGe technology. Containing nearly 1000 figures along with valuable appendices, the Silicon Heterostructure Handbook authoritatively surveys materials, fabrication, device physics, transistor optimization, optoelectronics components, measurement, compact modeling, circuit design, and device simulation.
The open access book covers a large class of nonlinear systems with many practical engineering applications. The approach is based on the extension of linear systems theory using the Volterra series. In contrast to the few existing treatments, our approach highlights the algebraic structure underlying such systems and is based on Schwartz’s distributions (rather than functions). The use of distributions leads naturally to the convolution algebras of linear time-invariant systems and the ones suitable for weakly nonlinear systems emerge as simple extensions to higher order distributions, without having to resort to ad hoc operators. The result is a much-simplified notation, free of multiple integrals, a conceptual simplification, and the ability to solve the associated nonlinear differential equations in a purely algebraic way. The representation based on distributions not only becomes manifestly power series alike, but it includes power series as the description of the subclass of memory-less, time-invariant, weakly nonlinear systems. With this connection, many results from the theory of power series can be extended to the larger class of weakly nonlinear systems with memory. As a specific application, the theory is specialised to weakly nonlinear electric networks. The authors show how they can be described by a set of linear equivalent circuits which can be manipulated in the usual way. The authors include many real-world examples that occur in the design of RF and mmW analogue integrated circuits for telecommunications. The examples show how the theory can elucidate many nonlinear phenomena and suggest solutions that an approach entirely based on numerical simulations can hardly suggest. The theory is extended to weakly nonlinear time-varying systems, and the authors show examples of how time-varying electric networks allow implementing functions unfeasible with time-invariant ones. The book is primarily intended for engineering students in upper semesters and in particular for electrical engineers. Practising engineers wanting to deepen their understanding of nonlinear systems should also find it useful. The book also serves as an introduction to distributions for undergraduate students of mathematics.
In two editions spanning more than a decade, The Electrical Engineering Handbook stands as the definitive reference to the multidisciplinary field of electrical engineering. Our knowledge continues to grow, and so does the Handbook. For the third edition, it has expanded into a set of six books carefully focused on a specialized area or field of study. Each book represents a concise yet definitive collection of key concepts, models, and equations in its respective domain, thoughtfully gathered for convenient access. Circuits, Signals, and Speech and Image Processing presents all of the basic information related to electric circuits and components, analysis of circuits, the use of the Laplace transform, as well as signal, speech, and image processing using filters and algorithms. It also examines emerging areas such as text-to-speech synthesis, real-time processing, and embedded signal processing. Each article includes defining terms, references, and sources of further information. Encompassing the work of the world's foremost experts in their respective specialties, Circuits, Signals, and Speech and Image Processing features the latest developments, the broadest scope of coverage, and new material on biometrics.
In two editions spanning more than a decade, The Electrical Engineering Handbook stands as the definitive reference to the multidisciplinary field of electrical engineering. Our knowledge continues to grow, and so does the Handbook. For the third edition, it has grown into a set of six books carefully focused on specialized areas or fields of study. Each one represents a concise yet definitive collection of key concepts, models, and equations in its respective domain, thoughtfully gathered for convenient access. Combined, they constitute the most comprehensive, authoritative resource available. Circuits, Signals, and Speech and Image Processing presents all of the basic information related to electric circuits and components, analysis of circuits, the use of the Laplace transform, as well as signal, speech, and image processing using filters and algorithms. It also examines emerging areas such as text to speech synthesis, real-time processing, and embedded signal processing. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar delves into the fields of electronics, integrated circuits, power electronics, optoelectronics, electromagnetics, light waves, and radar, supplying all of the basic information required for a deep understanding of each area. It also devotes a section to electrical effects and devices and explores the emerging fields of microlithography and power electronics. Sensors, Nanoscience, Biomedical Engineering, and Instruments provides thorough coverage of sensors, materials and nanoscience, instruments and measurements, and biomedical systems and devices, including all of the basic information required to thoroughly understand each area. It explores the emerging fields of sensors, nanotechnologies, and biological effects. Broadcasting and Optical Communication Technology explores communications, information theory, and devices, covering all of the basic information needed for a thorough understanding of these areas. It also examines the emerging areas of adaptive estimation and optical communication. Computers, Software Engineering, and Digital Devices examines digital and logical devices, displays, testing, software, and computers, presenting the fundamental concepts needed to ensure a thorough understanding of each field. It treats the emerging fields of programmable logic, hardware description languages, and parallel computing in detail. Systems, Controls, Embedded Systems, Energy, and Machines explores in detail the fields of energy devices, machines, and systems as well as control systems. It provides all of the fundamental concepts needed for thorough, in-depth understanding of each area and devotes special attention to the emerging area of embedded systems. Encompassing the work of the world's foremost experts in their respective specialties, The Electrical Engineering Handbook, Third Edition remains the most convenient, reliable source of information available. This edition features the latest developments, the broadest scope of coverage, and new material on nanotechnologies, fuel cells, embedded systems, and biometrics. The engineering community has relied on the Handbook for more than twelve years, and it will continue to be a platform to launch the next wave of advancements. The Handbook's latest incarnation features a protective slipcase, which helps you stay organized without overwhelming your bookshelf. It is an attractive addition to any collection, and will help keep each volume of the Handbook as fresh as your latest research.
In 1993, the first edition of The Electrical Engineering Handbook set a new standard for breadth and depth of coverage in an engineering reference work. Now, this classic has been substantially revised and updated to include the latest information on all the important topics in electrical engineering today. Every electrical engineer should have an opportunity to expand his expertise with this definitive guide. In a single volume, this handbook provides a complete reference to answer the questions encountered by practicing engineers in industry, government, or academia. This well-organized book is divided into 12 major sections that encompass the entire field of electrical engineering, including circuits, signal processing, electronics, electromagnetics, electrical effects and devices, and energy, and the emerging trends in the fields of communications, digital devices, computer engineering, systems, and biomedical engineering. A compendium of physical, chemical, material, and mathematical data completes this comprehensive resource. Every major topic is thoroughly covered and every important concept is defined, described, and illustrated. Conceptually challenging but carefully explained articles are equally valuable to the practicing engineer, researchers, and students. A distinguished advisory board and contributors including many of the leading authors, professors, and researchers in the field today assist noted author and professor Richard Dorf in offering complete coverage of this rapidly expanding field. No other single volume available today offers this combination of broad coverage and depth of exploration of the topics. The Electrical Engineering Handbook will be an invaluable resource for electrical engineers for years to come.
This newly and thoroughly revised edition of the 1988 Artech House classic offers you a comprehensive, up-to-date treatment of nonlinear microwave and RF circuits. It gives you a current, in-depth understanding of the theory of nonlinear circuit analysis with a focus on Volterra-series and harmonic-balance methods. You get practical guidance in designing nonlinear circuits and modeling solid-state devices for nonlinear circuit analysis by computer. Moreover, you learn how characteristics of such models affect the analysis of these circuits. Critical new topics include microwave heterojunction bipolar transistors (HBTs), heterojunction FETs (HEMTs), silicon MOSFETs, modern IC design approaches, new methods of harmonic-balance analysis, multitone analysis methods, Fourier methods for multitone problems, and artificial frequency mapping. What's more, the second edition has been updated to include discussions on nonlinear analysis of oscillators and design issues relating to RF and wireless technology. More than 120 illustrations support key topics throughout the book.
Design techniques for nonlinear microwave circuits are much less developed than for linear microwave circuits. Until now there has been no up-to-date text available in this area. Current titles in this field are considered outdated and tend to focus on analysis, failing to adequately address design and measurement aspects. Giannini and Leuzzi provide the theoretical background to non-linear microwave circuits before going on to discuss the practical design and measurement of non-linear circuits and components. Non-linear Microwave Circuit Design reviews all of the established analysis and characterisation techniques available and provides detailed coverage of key modelling methods. Practical examples are used throughout the text to emphasise the design and application focus of the book. * Provides a unique, design-focused, coverage of non-linear microwave circuits * Covers the fundamental properties of nonlinear circuits and methods for device modelling * Outlines non-linear measurement techniques and characterisation of active devices * Reviews available design methodologies for non-linear power amplifiers and details advanced software modelling tools * Provides the first detailed treatment of non-linear frequency multipliers, mixers and oscillators * Focuses on the application potential of non-linear components Practicing engineers and circuit designers working in microwave and communications engineering and designing new applications, as well as senior undergraduates, graduate students and researchers in microwave and communications engineering and their libraries will find this a highly rewarding read.
This volume collects together state-of-the-art contributions to the IEEE workshop on Nonlinear Dynamics of Electronic Systems.
Electronic Circuits covers all important aspects and applications of modern analog and digital circuit design. The basics, such as analog and digital circuits, on operational amplifiers, combinatorial and sequential logic and memories, are treated in Part I, while Part II deals with applications. Each chapter offers solutions that enable the reader to understand ready-made circuits or to proceed quickly from an idea to a working circuit, and always illustrated by an example. Analog applications cover such topics as analog computing circuits. The digital sections deal with AD and DA conversion, digital computing circuits, microprocessors and digital filters. This editions contains the basic electronics for mobile communications. The accompanying CD-ROM contains PSPICE software, an analog-circuit-simulation package, plus simulation examples and model libraries related to the book topics.