Download Free Singlet Oxygen Detection And Imaging Book in PDF and EPUB Free Download. You can read online Singlet Oxygen Detection And Imaging and write the review.

Singlet Oxygen, the lowest electronically excited state of molecular oxygen, is highly reactive and involved in many chemical and biological processes. It is one major mediator during photosensitization, which has been used by mankind since ancient times, even though the mechanisms behind it were understood only about half a century ago. The combination of high reactivity and very long natural lifetime allows for direct optical detection of singlet oxygen and its interactions using its characteristic phosphorescence at around 1270 nm. Since this emission is very weak, optical detection was technically very challenging for a long time. Therefore, even today, most laboratories only exploit the high reactivity to observe the interaction with sensor molecules, rather than singlet oxygen emission itself. However, in recent years highly sensitive optical detection was developed, the authors being major contributors. This book is dedicated to the detection of singlet oxygen, discussing possibilities, pitfalls and limits of the various methods with a special focus on time-resolved phosphorescence and the kinetics of singlet oxygen generation and decay including involved and related processes, discussing investigated systems with various complexity from solutions over in vitro to in vivo. The long-standing paradigm that singlet oxygen phosphorescence is a benchmark for detection systems rather than an option for process observation is still ubiquitous and this book hopes to contribute in overcoming this still prevailing bias.
Singlet Oxygen, the lowest electronically excited state of molecular oxygen, is highly reactive and involved in many chemical and biological processes. It is one major mediator during photosensitization, which has been used by mankind since ancient times, even though the mechanisms behind it were understood only about half a century ago. The combination of high reactivity and very long natural lifetime allows for direct optical detection of singlet oxygen and its interactions using its characteristic phosphorescence at around 1270 nm. Since this emission is very weak, optical detection was technically very challenging for a long time. Therefore, even today, most laboratories only exploit the high reactivity to observe the interaction with sensor molecules, rather than singlet oxygen emission itself. However, in recent years highly sensitive optical detection was developed, the authors being major contributors. This book is dedicated to the detection of singlet oxygen, discussing possibilities, pitfalls and limits of the various methods with a special focus on time-resolved phosphorescence and the kinetics of singlet oxygen generation and decay including involved and related processes, discussing investigated systems with various complexity from solutions over in vitro to in vivo. The long-standing paradigm that singlet oxygen phosphorescence is a benchmark for detection systems rather than an option for process observation is still ubiquitous and this book hopes to contribute in overcoming this still prevailing bias.
Meeting the desire for a comprehensive book that collects and curates the vast amount of knowledge gained in the field of singlet oxygen, this title covers the physical, chemical and biological properties of this reactive oxygen species and also its increasingly important applications across chemical, environmental and biomedical areas.The editors have a long and distinguished background in the field of singlet oxygen chemistry and biomedical applications, giving them a unique insight and ensuring the contributions attain the highest scientific level.The book provides an up to date reference resource for both the beginner and experienced researcher and crucially for those working across disciplines such as photochemistry, photobiology and photomedicine.
Meeting the desire for a comprehensive book that collects and curates the vast amount of knowledge gained in the field of singlet oxygen, this title covers the physical, chemical and biological properties of this reactive oxygen species and also its increasingly important applications across chemical, environmental and biomedical areas.The editors have a long and distinguished background in the field of singlet oxygen chemistry and biomedical applications, giving them a unique insight and ensuring the contributions attain the highest scientific level.The book provides an up to date reference resource for both the beginner and experienced researcher and crucially for those working across disciplines such as photochemistry, photobiology and photomedicine.
Significant progress has been made in recent years in quenched-phosphorescence oxygen sensing, particularly in the materials and applications of this detection technology that are open to commercialization, like uses in brain imaging and food packaging. Prompted by this, the editors have delivered a dedicated book that brings together these developments, provides a comprehensive overview of the different detection methodologies, and representative examples and applications. This book is intended to attract new researchers from various disciplines such as chemistry, physics, biology and medicine, stimulate further progress in the field and assist in developing new applications. Providing a concise summary at the cutting edge, this practical guide for current experts and new potential users will increase awareness of this versatile sensing technology.
Significant progress has been made in recent years in quenched-phosphorescence oxygen sensing, particularly in the materials and applications of this detection technology that are open to commercialization, like uses in brain imaging and food packaging. Prompted by this, the editors have delivered a dedicated book that brings together these developments, provides a comprehensive overview of the different detection methodologies, and representative examples and applications. This book is intended to attract new researchers from various disciplines such as chemistry, physics, biology and medicine, stimulate further progress in the field and assist in developing new applications. Providing a concise summary at the cutting edge, this practical guide for current experts and new potential users will increase awareness of this versatile sensing technology.
The chemical reactivity of singlet oxygen (1O2) (SO) derives from its electronically excited state. Being a unique reactive oxygen species SO takes part in many important atmospheric, biological physical, chemical, and therapeutic process and attracted current research interest. To understand the mechanistic pathways in various process the detection and quantification of SO is very important. The direct method of detection is very challenging due to its highly reactive nature. Only direct method of determination of phosphorescence of SO at 1270¬†nm has been utilised but that also puts some limitation due to very low luminescence quantum yield. Indirect method using UV,ÄìVis spectrophotometric, fluorescent and chemiluminescent probes has been extensively studied for this purpose. Elucidation of various mechanistic processes improvised the use of sophisticated spectroscopic detection probe for SO have been discussed in a simple and lucid manner in this article through citation of literature examples. Four major spectroscopic methods i.e. spectrophotometry, fluorescence, emission and chemiluminescence are elaborately discussed with special emphasis to chemical probes having high selectivity and sensitivity for SO.
Meeting the desire for a comprehensive book that collects and curates the vast amount of knowledge gained in the field of singlet oxygen, this title covers the physical, chemical and biological properties of this reactive oxygen species and also its increasingly important applications across chemical, environmental and biomedical areas.The editors have a long and distinguished background in the field of singlet oxygen chemistry and biomedical applications, giving them a unique insight and ensuring the contributions attain the highest scientific level.The book provides an up to date reference resource for both the beginner and experienced researcher and crucially for those working across disciplines such as photochemistry, photobiology and photomedicine.