Download Free Single Valued Neutrosophic Signed Graphs Book in PDF and EPUB Free Download. You can read online Single Valued Neutrosophic Signed Graphs and write the review.

Motivated by the notion of single valued neutrosophic graphs defined by Broumi, Talea, Bakali and Smarandache[2] and notion of intuitionistic fuzzy signed graphs defined by Mishra and Pal[8], we introduce the concept of single valued neutrosophic signed graphs and examine the properties of this new concept and examples.
The notion of interval valued neutrosophic sets is a generalization of fuzzy sets, intuitionistic fuzzy sets, interval valued fuzzy sets, interval valued intuitionstic fuzzy sets and single valued neutrosophicsets. We apply for the first time the concept of interval valued neutrosophic sets, an instance of neutrosophic sets, to the graph theory. We introduce certain types of interval valued signed neutrosophc graphs (IVNG) and investigate some of their properties with proof and example.
In this paper, we propose a new concept named the uniform single valued neutrosophic graph. An illustrative example and some properties are examined. Next, we develop an algorithmic approach for computing the complement of the single valued neutrosophic graph. A numerical example is demonstrated for computing the complement of single valued neutrosophic graphs and uniform single valued neutrosophic graph.
The notion of single valued neutrosophic sets is a generalization of fuzzy sets, intuitionistic fuzzy sets. We apply the concept of single valued neutrosophic sets, an instance of neutrosophic sets, to graphs. We introduce certain types of single valued neutrosophic graphs (SVNG) and investigate some of their properties with proofs and examples.
The notion of interval valued neutrosophic sets is a generalization of fuzzy sets, intuitionistic fuzzy sets, interval valued fuzzy sets, interval valued intuitionstic fuzzy sets and single valued neutrosophicsets. We apply for the first time the concept of interval valued neutrosophic sets, an instance of neutrosophic sets, to the graph theory. We introduce certain types of interval valued signed neutrosophc graphs (IVNG) and investigate some of their properties with proof and example.
In this paper, we introduced a new concept of single valued neutrosophic graph (SVNG) known as constant single valued neutrosophic graph (CSVNG). Basically, SVNG is a generalization of intuitionistic fuzzy graph (IFG). More specifically, we described and explored somegraph theoretic ideas related to the introduced concepts of CSVNG. An application of CSVNG in a Wi-Fi network system is discussed and a comparison of CSVNG with constant IFG is established showing the worth of the proposed work. Further, several terms like constant function and totally constant function are investigated in the frame-work of CSVNG and their characteristics are studied.
This paper derived single-valued neutrosophic graphs from single-valued neutrosophic hypergraphs via strong equivalence relation. We show that any weak single-valued neutrosophic graph is a derived single-valued neutrosophic graph and any linear weak single-valued neutrosophic tree is an extendable linear single-valued neutrosophic tree.
Many results have been obtained on isolated graphs and complete graphs. In this paper, a necessary and sufficient condition will be proved for a single valued neutrosophic graph to be an isolated single valued neutrosophic graph.
The concept of neutrosophic sets can be utilized as a mathematical tool to deal with imprecise and unspecified information. In this paper, we apply the concept of single-valued neutrosophic sets to graphs. We introduce the notion of single-valued neutrosophic graphs, and present some fundamental operations on single-valued neutrosophic graphs. We explore some interesting properties of single-valued neutrosophic graphs by level graphs. We highlight some flaws in the definitions of Broumi et al. [10] and Shah-Hussain [18]. We also present an application of single-valued neutrosophic graphs in social network.
This book addresses single-valued neutrosophic graphs and their applications. In addition, it introduces readers to a number of central concepts, including certain types of single-valued neutrosophic graphs, energy of single-valued neutrosophic graphs, bipolar single-valued neutrosophic planar graphs, isomorphism of intuitionistic single-valued neutrosophic soft graphs, and single-valued neutrosophic soft rough graphs. Divided into eight chapters, the book seeks to remedy the lack of a mathematical approach to indeterminate and inconsistent information. Chap. 1 presents a concise review of single-valued neutrosophic sets, while Chap. 2 explains the notion of neutrosophic graph structures and explores selected properties of neutrosophic graph structures. Chap. 3 discusses specific bipolar neutrosophic graphs. Chap. 4 highlights the concept of interval-valued neutrosophic graphs, while Chap. 5 presents certain notions concerning interval-valued neutrosophic graph structures. Chap. 6 addresses the concepts of rough neutrosophic digraphs and neutrosophic rough digraphs. Chap. 7 focuses on the concepts of neutrosophic soft graphs and intuitionistic neutrosophic soft graphs, before Chap. 8 rounds out the book by considering neutrosophic soft rough graphs.