Download Free Single Valued Neutrosophic Sets Book in PDF and EPUB Free Download. You can read online Single Valued Neutrosophic Sets and write the review.

In this paper one generalizes the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS). Many examples are presented. Distinctions between NS and IFS are underlined.
(Fuzzy) rough sets are closely related to (fuzzy) topologies. Neutrosophic rough sets and neutrosophic topologies are extensions of (fuzzy) rough sets and (fuzzy) topologies, respectively. In this paper, a new type of neutrosophic rough sets is presented, and the basic properties and the relationships to neutrosophic topology are discussed.
In this paper, a definition of quadripartitioned single valued bipolar neutrosophic set (QSVBNS) is introduced as a generalization of both quadripartitioned single valued neutrosophic sets (QSVNS) and bipolar neutrosophic sets (BNS). There is an inherent symmetry in the definition of QSVBNS. Some operations on them are defined and a set theoretic study is accomplished. Various similarity measures and distance measures are defined on QSVBNS. An algorithm relating to multi-criteria decision making problem is presented based on quadripartitioned bipolar weighted similarity measure. Finally, an example is shown to verify the flexibility of the given method and the advantage of considering QSVBNS in place of fuzzy sets and bipolar fuzzy sets.
In this chapter, we introduce neutrosophic triplet cosets for neutrosophic triplet G-module and neutrosophic triplet quotient G-module. Then, we give some definitions and examples for neutrosophic triplet quotient G-module and neutrosophic triplet cosets. Also, we obtain isomorphism theorems for neutrosophic triplet G-modules and we prove isomorphism theorems for neutrosophic triplet G-modules.
A single-valued neutrosophic set (SVNS) is an instance of a neutrosophic set, which can be used to handle uncertainty, imprecise, indeterminate, and inconsistent information in real life. In this paper, a new distance measure between two SVNSs is defined by the full consideration of truthmembership function, indeterminacy-membership function, and falsity-membership function for the forward and backward differences. Then the similarity measure, the entropy measure, and the index of distance are also presented. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed clustering method and multicriteria decision-making method based on the distance (similarity) measure between SVNSs.
In information technology, the concepts of cost, time, delivery, space, quality, durability, and price have gained greater importance in solving managerial decision-making problems in supply chain models, transportation problems, and inventory control problems. Moreover, competition is becoming tougher in imprecise environments. Neutrosophic sets and logic are gaining significant attention in solving real-life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. Neutrosophic Sets in Decision Analysis and Operations Research is a critical, scholarly publication that examines various aspects of organizational research through mathematical equations and algorithms and presents neutrosophic theories and their applications in various optimization fields. Featuring a wide range of topics such as information retrieval, decision making, and matrices, this book is ideal for engineers, technicians, designers, mathematicians, practitioners of mathematics in economy and technology, scientists, academicians, professionals, managers, researchers, and students.
Neutrosophic theory and applications have been expanding in all directions at an astonishing rate especially after the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structure such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been a very important tool in all various areas of data mining, decision making, e-learning, engineering, medicine, social science, and some more. The book “New Trends in Neutrosophic Theories and Applications” focuses on theories, methods, algorithms for decision making and also applications involving neutrosophic information. Some topics deal with data mining, decision making, e-learning, graph theory, medical diagnosis, probability theory, topology, and some more. 30 papers by 39 authors and coauthors.
This book presents the advancements and applications of neutrosophics, which are generalizations of fuzzy logic, fuzzy set, and imprecise probability. The neutrosophic logic, neutrosophic set, neutrosophic probability, and neutrosophic statistics are increasingly used in engineering applications (especially for software and information fusion), medicine, military, cybernetics, physics.In the last chapter a soft semantic Web Services agent framework is proposed to facilitate the registration and discovery of high quality semantic Web Services agent. The intelligent inference engine module of soft semantic Web Services agent is implemented using interval neutrosophic logic.
We apply the notion of single-valued neutrosophic sets to K-algebras. We develop the concept of single- valued neutrosophic K-subalgebras, and present some of their properties. Moreover, we study the behavior of single-valued neutrosophic K-subalgebras under homomorphism.