Download Free Single Valued Neutrosophic Lie Algebras Book in PDF and EPUB Free Download. You can read online Single Valued Neutrosophic Lie Algebras and write the review.

A single-valued neutrosophic (SVN) set is a powerful general formal framework that generalizes the concept of fuzzy set and intuitionistic fuzzy set. In SVN set, indeterminacy is quantified explicitly, and truth membership, indeterminacy membership, and falsity membership are independent. In this paper, we apply the notion of SVN sets to Lie algebras. We develop the concepts of SVN Lie subalgebras and SVN Lie ideals. We describe some interesting results of SVN Lie ideals.
Complex neutrosophic Lie subalgebras and complex neutrosophic ideals of Lie algebras are de ned in this paper. Each component in complex neutrosophic Lie algebra has magnitude and phase terms. Some characteristics of complex neutrosophic Lie subalgebras (ideals) and some of their operations like intersection and Cartesian product are also discussed.
Neutrosophic sets and soft sets are two different mathematical tools for representing vagueness and uncertainty.We apply these models in combination to study vagueness and uncertainty in K-algebras. We introduce the notion of single-valued neutrosophic soft (SNS) K-algebras and investigate some of their properties. We establish the notion of (2, 2 _q)-single-valued neutrosophic soft K-algebras and describe some of their related properties. We also illustrate the concepts with numerical examples.
Neutrosophic set is a part of neutrosophy which studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. Neutrosophic set is a powerful general formal framework that has been recently proposed. However, neutrosophic set needs to be specified from a technical point of view. To this effect, we define the settheoretic operators on an instance of neutrosophic set, we call it single valued neutrosophic set (SVNS). We provide various properties of SVNS, which are connected to the operations and relations over SVNS.
The concept of neutrosophic set from philosophical point of view was first considered bySm arandache. A single-valued neutrosophic set is a subclass of the neutrosophic set from a scientific and engineering point of view and an extension of intuitionistic fuzzy sets. In this research article, we apply the notion of single-valued neutrosophic sets to K-algebras. We introduce the notion of single-valued neutrosophic topological K-algebras and investigate some of their properties. Further, we study certain properties, including C5-connected, super connected, compact and Hausdorff, of single-valued neutrosophic topological K-algebras. We also investigate the image and pre-image of single-valued neutrosophic topological K-algebras under homomorphism.
A collection of papers from multiple authors. In 2019 and 2020 Smarandache [1, 2, 3, 4] generalized the classical Algebraic Structures to NeutroAlgebraic Structures (or NeutroAlgebras) {whose operations and axioms are partially true, partially indeterminate, and partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or AntiAlgebras) {whose operations and axioms are totally false}. The NeutroAlgebras & AntiAlgebras are a new field of research, which is inspired from our real world. In classical algebraic structures, all axioms are 100%, and all operations are 100% well-defined, but in real life, in many cases these restrictions are too harsh, since in our world we have things that only partially verify some laws or some operations. Using the process of NeutroSophication of a classical algebraic structure we produce a NeutroAlgebra, while the process of AntiSophication of a classical algebraic structure produces an AntiAlgebra.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
This paper introduces the concept of single–valued neutrosophic EQ–subalgebras, single–valued neutrosophic EQ–prefilters and single–valued neutrosophic EQ–filters. We study some properties of single–valued neutrosophic EQ–prefilters and show how to construct single–valued neutrosophic EQ–filters. Finally, the relationship between single–valued neutrosophic EQ–filters and EQ–filters are studied.
We introduced the theory of Single valued neutrosophic hypergroup as the initial theory of single valued neutrosophic hyper algebra and also developed some results on single valued neutrosophic hypergroup.
Molodtsov originated soft set theory that was provided a general mathematical framework for handling with uncertainties in which we meet the data by affix parameterized factor during the information analysis as differentiated to fuzzy as well as neutrosophic set theory. The main object of this paper is to lay a foundation for providing a new approach of single-valued neutrosophic soft tool which is considering many problems that contain uncertainties.