Download Free Single Sided Nmr Book in PDF and EPUB Free Download. You can read online Single Sided Nmr and write the review.

This book describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications in medicine, materials science, and chemical engineering. It will be the first comprehensive account of this new device and its applications. Among the key advances of this method is that images can be obtained in much shorter times than originally anticipated, and that even vector maps of flow fields can be measured although the magnetic fields are highly inhomogeneous. Furthermore, the equipment is small, mobile and affordable to small and medium enterprises and can be located in doctors’ offices.
The goal of this book is to provide an introduction to the practical use of mobile NMR at a level as basic as the operation of a smart phone. Each description follows the same didactic pattern: introduction, basic theory, pulse sequences and parameters, beginners-level measurements, advanced-level measurements, and data processing. Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue depicting the brain function and the beating heart. In both applications large super-conducting magnets are employed which magnetize atomic nuclei of an object positioned inside the magnet. Their circulating motion is interrogated by radio-frequency waves. Depending on the operating mode, the frequency spectrum provides the chemist with molecular information, the medical doctor with anatomic images, while the materials scientist is interested in NMR relaxation parameters, which scale with material properties and determine the contrast in magnetic resonance images. Recent advances in magnet technology led to a variety of small permanent magnets, by which NMR spectra, images, and relaxation parameters can be measured with mobile and low-cost instruments.
This book will summarise recent hardware developments, highlight the challenges facing mobile and generally low-field NMR and MRI and describe various emerging applications - some of which have commercial interest.
This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.
This book describes the advanced developments in methodology and applications of NMR spectroscopy to life science and materials science. Experts who are leaders in the development of new methods and applications of life and material sciences have contributed an exciting range of topics that cover recent advances in structural determination of biological and material molecules, dynamic aspects of biological and material molecules, and development of novel NMR techniques, including resolution and sensitivity enhancement. First, this book particularly emphasizes the experimental details for new researchers to use NMR spectroscopy and pick up the potentials of NMR spectroscopy. Second, the book is designed for those who are involved in either developing the technique or expanding the NMR application fields by applying them to specific samples. Third, the Nuclear Magnetic Resonance Society of Japan has organized this book not only for NMR members of Japan but also for readers worldwide who are interested in using NMR spectroscopy extensively.
The aim of this book is to introduce the use of NMR and MRI methods for investigating electrochemical storage materials and devices to help both NMR spectroscopists entering the field of batteries and battery specialists seeking diagnostic methods for material and device degradation.
Magnetic resonance imaging (MRI) is a medical imaging technique used to visualize detailed internal structure of the body. This book discusses the recent developments in the field of MRI and its application to the diagnosis of human brain disorders. In addition, it reviews the newly emerging concepts and technology, based on the multi-coherence imaging (MQCI). It explains how computer packages can be used to generate images in diseased states and compare them to in vivo results. This will help improve the diagnosis of brain disorders based on the real-time events happening on atomic and molecular quantum levels. This is important since quantum-based MRI would enable clinicians to detect brain tumors at the very early stages. - Uses practical examples to explain the techniques - making it easier to understand the concepts - Uses diagrams to explain the physics behind the technique - avoiding the use of complicated mathematical formulae
The applications of nuclear magnetic resonance (NMR) to petroleum exploration and production have become more and more important in recent years. The development of the NMR logging technology and the NMR applications to core analysis and formation evaluation have been very rapid and extensive.The scope of this book covers a wide range of NMR related petrophysical measurements on cores including brief descriptions of recent applications of Magic Angle Spinning (MAS) NMR and the basics of NMR imaging of cores. In the discussion of NMR logging applications various schemes of using NMR logs to obtain necessary information for formation evaluation are outlined, such as irreducible water saturation determination, hydrocarbon typing, oil viscosity estimation, and permeability prediction. The principles of these applications are discussed using schematic diagrams for illustration.A unique aspect of the book is that it provides a detailed account of the basic principles of spin diffusion and relaxation in porous media. Another important area that is covered is the inversion of NMR data into a distribution of amplitudes associated with relaxation time which provides the basic information needed to interpret the NMR measurements obtained from logging.
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
This book describes the use of NMR spectroscopy for dealing with problems of small organic molecule structural elucidation. It features a significant amount of vital chemical shift and coupling information but more importantly, it presents sound principles for the selection of the techniques relevant to the solving of particular types of problem, whilst stressing the importance of extracting the maximum available information from the simple 1-D proton experiment and of using this to plan subsequent experiments. Proton NMR is covered in detail, with a description of the fundamentals of the technique, the instrumentation and the data that it provides before going on to discuss optimal solvent selection and sample preparation. This is followed by a detailed study of each of the important classes of protons, breaking the spectrum up into regions (exchangeables, aromatics, heterocyclics, alkenes etc.). This is followed by consideration of the phenomena that we know can leave chemists struggling; chiral centres, restricted rotation, anisotropy, accidental equivalence, non-first-order spectra etc. Having explained the potential pitfalls that await the unwary, the book then goes on to devote chapters to the chemical techniques and the most useful instrumental ones that can be employed to combat them. A discussion is then presented on carbon-13 NMR, detailing its pros and cons and showing how it can be used in conjunction with proton NMR via the pivotal 2-D techniques (HSQC and HMBC) to yield vital structural information. Some of the more specialist techniques available are then discussed, i.e. flow NMR, solvent suppression, Magic Angle Spinning, etc. Other important nuclei are then discussed and useful data supplied. This is followed by a discussion of the neglected use of NMR as a tool for quantification and new techniques for this explained. The book then considers the safety aspects of NMR spectroscopy, reviewing NMR software for spectral prediction and data handling and concludes with a set of worked Q&As.