Download Free Single Mode Operation Of Tunable Laser Diodes Book in PDF and EPUB Free Download. You can read online Single Mode Operation Of Tunable Laser Diodes and write the review.

The phenomenal growth in Internet traffic has lead to a huge increase in demand for data transmission capacity on a worldwide level. As a result, wavelength division multiplexing (WDM) technology emerged, which makes it possible to transmit a large number of optical channels on a single optical fiber. An equally significant development occurred in optical networks, where switching and routing of signals takes place in the optical domain. This technology places special demands on the optical sources (lasers) used in the system. This text offers a description of the optical sources (equipment and devices) designed to meet these demands. Sources for DWDM Systems is intended for the engineers and graduate students working on optical networks. There is currently a nearly explosive interest in optical networks and the components required for such networks, but there is presently no single work which covers the variety of optical sources which may be used. This book will cover a particular component, tunable lasers, which is the next "big thing" in DWDM. The primary market are engineers developing tuneable lasers for optical networks, as well as graduate students enrolled in the optical engineering curriculum, especially: optical communication, semiconductor lasers, optical networks, and/or components for optical networks.
This comprehensive reference discusses the underlying physics, operational principles, and performance and applications of tunable laser diodes. The book is supplemented with practical examples and helpful notations.
This volume presents state-of-the-art information on several important material systems and device structures employed in modern semiconductor lasers. The first two chapters discuss several III-V, II-VI, and VI-VI compound semiconductor material systems employed in diode lasers whose emission spectra cover the range from the blue to the mid-infrared. Subsequent chapters describe the elaboration of special laser structures designed for achieving narrow spectral linewidths and wavelength tunability, as well as high power emission devices. The last chapter covers the development of surface emitting diode lasers, particularly vertical cavity structures. In all five chapters, the underlying device physics as well as the state-of-the-art and future trends are discussed. This book introduces the non-expert to the design and fabrication issues involved in the development of these important laser devices. In addition, it reviews the current status of the different material systems and cavity configurations for the benefit of readers engaged in research in this field. Useful background material related to the fundamentals of lasing in semiconductors can be found in the companion volume, Semiconductor Lasers I: Fundamentals. - Covers important recent advances in materials, design, fabrication, and device structure of semiconductor lasers - aspects not covered in previously existing literature - Introduces the non-expert to the subject - Useful for professionals engaged in research and development - Numerous schematic and data-containing illustrations - Written by leading experts in the field
This is the first book on tunable external cavity semiconductor diode lasers, providing an up-to-date survey on the physics, technology, and performance of widely applicable coherent radiation sources of tunable external cavity diode lasers. The purpose is to provide a thorough account of the state-of-the-art of tunable external cavity diode lasers which is achieved by combining this account with basic concepts of semiconductor diode lasers and its tunability with monolithic structures. The practical and accessible information in this volume will enable the reader to study external cavity diode laser, to build up the systems of external cavity diode laser as well as to develop advanced systems for their particular applications. This book will appeal to undergraduate and graduate students, scientists and engineers alike.
This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.
Photonic MEMS devices represent the next major breakthrough in the silicon revolution. While many quality resources exist on the optic and photonic aspect of device physics, today’s researchers are in need of a reference that goes beyond to include all aspects of engineering innovation. An extension on traditional design and analysis, Photonic MEMS Devices: Design, Fabrication, and Control describes a broad range of optical and photonic devices, from MEMS optical switches and bandgap crystal switches to optical variable attenuators (VOA) and injection locked tunable lasers. It deals rigorously with all these technologies at a fundamental level, systematically introducing critical nomenclature. Each chapter also provides analysis techniques, equations, and experimental results. The book focuses not only on traditional design analysis, but also provides extensive background on realistic simulation and fabrication processes. With a clear attention to experimental relevance, this book provides the fundamental knowledge needed to take the next-step in integrating photonic MEMS devices into commercial products and technology.
Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.
This comprehensive handbook gives a fully updated guide to lasers and laser systems, including the complete range of their technical applications. The first volume outlines the fundamental components of lasers, their properties and working principles. The second volume gives exhaustive coverage of all major categories of lasers, from solid-state and semiconductor diode to fiber, waveguide, gas, chemical, and dye lasers. The third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization.