Download Free Single Loop Control Methods Book in PDF and EPUB Free Download. You can read online Single Loop Control Methods and write the review.

This book fills the gap between basic control configurations (Practical Process Control) and model predictive control (MPC). For those loops whose performance has a direct impact on plant economics or product quality, going beyond simple feedback or cascade can improve control performance, or specifically, reduce the variance about the target. However, the effort required to implement such control technology must be offset by increased economic returns from production operations. The economic aspects of the application of the various advanced control technologies are stressed throughout the book.
In this in-depth book, the authors address the concepts and terminology that are needed to work in the field of process control. The material is presented in a straightforward manner that is independent of the control system manufacturer. It is assumed that the reader may not have worked in a process plant environment and may be unfamiliar with the field devices and control systems. Much of the material on the practical aspects of control design and process applications is based on the authors personal experience gained in working with process control systems. Thus, the book is written to act as a guide for engineers, managers, technicians, and others that are new to process control or experienced control engineers who are unfamiliar with multi-loop control techniques. After the traditional single-loop and multi-loop techniques that are most often used in industry are covered, a brief introduction to advanced control techniques is provided. Whether the reader of this book is working as a process control engineer, working in a control group or working in an instrument department, the information will set the solid foundation needed to understand and work with existing control systems or to design new control applications. At various points in the chapters on process characterization and control design, the reader has an opportunity to apply what was learned using web-based workshops. The only items required to access these workshops are a high-speed Internet connection and a web browser. Dynamic process simulations are built into the workshops to give the reader a realistic "hands-on" experience. Also, one chapter of the book is dedicated to techniques that may be used to create process simulations using tools that are commonly available within most distributed control systems. At various points in the chapters on process characterization and control design, the reader has an opportunity to apply what was learned using web-based workshops. The only items required to access these workshops are a high-speed Internet connection and a web browser. Dynamic process simulations are built into the workshops to give the reader a realistic "hands-on" experience. Also, one chapter of the book is dedicated to techniques that may be used to create process simulations using tools that are commonly available within most distributed control systems. As control techniques are introduced, simple process examples are used to illustrate how these techniques are applied in industry. The last chapter of the book, on process applications, contains several more complex examples from industry that illustrate how basic control techniques may be combined to meet a variety of application requirements. As control techniques are introduced, simple process examples are used to illustrate how these techniques are applied in industry. The last chapter of the book, on process applications, contains several more complex examples from industry that illustrate how basic control techniques may be combined to meet a variety of application requirements.
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.
Classical Feedback Control with Nonlinear Multi-Loop Systems describes the design of high-performance feedback control systems, emphasizing the frequency-domain approach widely used in practical engineering. It presents design methods for high-order nonlinear single- and multi-loop controllers with efficient analog and digital implementations. Bode integrals are employed to estimate the available system performance and to determine the ideal frequency responses that maximize the disturbance rejection and feedback bandwidth. Nonlinear dynamic compensators provide global stability and improve transient responses. This book serves as a unique text for an advanced course in control system engineering, and as a valuable reference for practicing engineers competing in today’s industrial environment.
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.
PID Control for Industrial Processes presents a clear, multidimensional representation of proportional - integral - derivative (PID) control for both students and specialists working in the area of PID control. It mainly focuses on the theory and application of PID control in industrial processes. It incorporates recent developments in PID control technology in industrial practice. Emphasis has been given to finding the best possible approach to develop a simple and optimal solution for industrial users. This book includes several chapters that cover a broad range of topics and priority has been given to subjects that cover real-world examples and case studies. The book is focused on approaches for controller tuning, i.e., method bases on open-loop plant tests and closed-loop experiments.
This open access Brief introduces the basic principles of control theory in a concise self-study guide. It complements the classic texts by emphasizing the simple conceptual unity of the subject. A novice can quickly see how and why the different parts fit together. The concepts build slowly and naturally one after another, until the reader soon has a view of the whole. Each concept is illustrated by detailed examples and graphics. The full software code for each example is available, providing the basis for experimenting with various assumptions, learning how to write programs for control analysis, and setting the stage for future research projects. The topics focus on robustness, design trade-offs, and optimality. Most of the book develops classical linear theory. The last part of the book considers robustness with respect to nonlinearity and explicitly nonlinear extensions, as well as advanced topics such as adaptive control and model predictive control. New students, as well as scientists from other backgrounds who want a concise and easy-to-grasp coverage of control theory, will benefit from the emphasis on concepts and broad understanding of the various approaches. Electronic codes for this title can be downloaded from https://extras.springer.com/?query=978-3-319-91707-8