Download Free Single Event Effects From Space To Accelerator Environments Book in PDF and EPUB Free Download. You can read online Single Event Effects From Space To Accelerator Environments and write the review.

Spacecraft depend on electronic components that must perform reliably over missions measured in years and decades. Space radiation is a primary source of degradation, reliability issues, and potentially failure for these electronic components. Although simulation and modeling are valuable for understanding the radiation risk to microelectronics, there is no substitute for testing, and an increased use of commercial-off-the- shelf parts in spacecraft may actually increase requirements for testing, as opposed to simulation and modeling. Testing at the Speed of Light evaluates the nation's current capabilities and future needs for testing the effects of space radiation on microelectronics to ensure mission success and makes recommendations on how to provide effective stewardship of the necessary radiation test infrastructure for the foreseeable future.
This book describes the fundamental concepts underlying radiation-induced failure mechanisms in electronic components operating in harsh environments, such as in space missions or in particle accelerators. In addition to providing an extensive overview of the dynamics and composition of different radiation environments, the authors discuss the failure mechanisms, known as single-event effects (SEEs), and dedicated failure modeling and prediction methodologies. Additionally, novel radiation-hardening-by-design (RHBD) techniques at physical layout and circuit levels are described. Readers who are newcomers to this field will learn the fundamental concepts of particle interaction physics and electronics hardening design, starting from the composition and dynamics of radiation environments and their effects on electronics, to the qualification and hardening of components. Experienced readers will enjoy the comprehensive discussion of the state-of-the-art in modeling, simulation, and analysis of radiation effects developed in the recent years, especially the outcome of the recent European project, RADSAGA. Describes both the fundamental concepts underlying radiation effects in electronics and state-of-the-art hardening methodologies Addresses failure mechanisms, known as single-event effects (SEEs), and dedicated failure modeling and prediction methodologies Reveals novel radiation-hardening-by-design (RHBD) techniques at physical layout and circuit levels Offers readers the first book in which particle accelerator applications will be extensively included in the radiation effects context This is an open access book.
Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.
This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metal-oxide-semiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes the background material necessary for understanding radiation effects at a more general level.
This title analyzes distributed Earth observation missions from different perspectives. In particular, the issues arising when the payloads are distributed on different satellites are considered from both the theoretical and practical points of view. Moreover, the problems of designing, measuring, and controlling relative trajectories are thoroughly presented in relation to theory and applicable technologies. Then, the technological challenges to design satellites able to support such missions are tackled. An ample and detailed description of missions and studies complements the book subject.