Download Free Single Electron Devices And Circuits In Silicon Book in PDF and EPUB Free Download. You can read online Single Electron Devices And Circuits In Silicon and write the review.

This book provides a review of research on single-electron devices and circuits in silicon. It considers the design, fabrication, and characterization of single-electron transistors, single-electron memory devices, few-electron transfer devices such as electron pumps and turnstiles, and single-electron logic devices. In all cases, a review of various device designs is provided, and in many cases, the devices developed during the author's own research work are used as detailed examples. An introduction to the physics of the single-electron charging effects is also provided.
This book reviews research on single-electron devices and circuits in silicon. These devices provide a means to control electronic charge at the one-electron level and are promising systems for the development of few-electron, nanoscale electronic circuits. The book considers the design, fabrication, and characterization of single-electron transistors, single-electron memories, few-electron transfer devices such as electron pumps and turnstiles, and single-electron logic devices. A review of the many different approaches used for the experimental realisation of these devices is provided and devices developed during the author''s own research are used as detailed examples. An introduction to the physics of single-electron charging effects is included. Sample Chapter(s). Chapter 1: Introduction (301 KB). Contents: Introduction; Single-Electron Charging Effects; Single-Electron Transistors in Silicon; Single-Electron Memory; Few-Electron Transfer Devices; Single-Electron Logic Circuits. Readership: Researchers, academics, and postgraduate students in nanoelectronics, nanofabrication, nanomaterials and nanostructures, quantum physics and electrical & electronic engineering.
Properties of nanosilicon in the form of nanoparticles, nanowires, nanotubes, and as porous material are of great interest. They can be used in finding suitable components for future miniature devices, and for the more exciting possibilities of novel optoelectronic applications due to bright luminescence from porous silicon, nanoparticles and nanowires. New findings from research into metal encapsulated clusters, silicon fullerenes and nanotubes have opened up a new paradigm in nanosilicon research and this could lead to large scale production of nanoparticles with control on size and shape as well as novel quasi one-dimensional structures. There are possibilities of using silicon as an optical material and in the development of a silicon laser. In Nanosilicon, leading experts cover state-of-the-art experimental and theoretical advances in the different forms of nanosilicon. Furthermore, applications of nanosilicon to single electron transistors, as photonic material, chemical and biological sensors at molecular scale, and silicon nanowire devices are also discussed. Self-assemblies of silicon nanoforms are important for applications. These developments are also related to cage structures of silicon in clathrates. With an interesting focus on the bottlenecks in the advancement of silicon based technology, this book provides a much-needed overview of the current state of understanding of nanosilicon research. - Latest developments in nanoparticles, nanowires and nanotubes of silicon - Focus on nanosilicon - a very timely subject attracting large interest - Novel chapters on metal encapsulated silicon clusters and nanotubes
The field of single charge tunneling comprises of phenomena where the tunneling of a microscopic charge, usually carried by an electron or a Cooper pair, leads to macro scopically observable effects. The first conference entirely devoted to this new field was the NATO Advanced Study Institute on Single Charge Tunneling held in Les Hauches, France, March 5-15, 1991. This book contains a series of tutorial articles based on lectures presented at the meeting. It was intended to provide both an introduction for nonexperts and a valuable reference summarizing the state of the art of single charge tun neling. A complementary publication with contributions by participants of the NATO Advanced Study Institute is the Special Issue on Single Charge Tunneling of Zeitschrift für Physik B, Vol. 85, pp. 317-468 (1991 ). That issue with original papers provides a snapshot af the leading edge of current research in the field. The success of the meeting and the publicatian of this volume was made possible through the generaus support af the NATO Scientific A:ffairs Division, Brussels, Belgium. The Centre de Physique des Hauches has provided a superbly situated conference site and took care af many lacal arrangements. Both far the preparation of the conference and the handling af some manuscripts the suppart af the Centre d 'Etudes de Saclay was essential. The editing of the proceedings volume would not have been passible without the dedicated efforts of Dr. G. -1. Ingald, who tailared a 1\.
This book offers combined views on silicon-on-insulator (SOI) nanoscaled electronics from experts in the fields of materials science, device physics, electrical characterization and computer simulation. Coverage analyzes prospects of SOI nanoelectronics beyond Moore’s law and explains fundamental limits for CMOS, SOICMOS and single electron technologies.
Summarizes the advances in cryoelectronics starting from the fundamentals in physics and semiconductor devices to electronic systems, hybrid superconductor-semiconductor technologies, photonic devices, cryocoolers and thermal management. This book provides an exploration of the theory, research, and technologies related to cryoelectronics.
Semiconductor nanocrystals and metal nanoparticles are the building blocks of the next generation of electronic, optoelectronic, and photonic devices. Covering this rapidly developing and interdisciplinary field, the book examines in detail the physical properties and device applications of semiconductor nanocrystals and metal nanoparticles. It begins with a review of the synthesis and characterization of various semiconductor nanocrystals and metal nanoparticles and goes on to discuss in detail their optical, light emission, and electrical properties. It then illustrates some exciting applications of nanoelectronic devices (memristors and single-electron devices) and optoelectronic devices (UV detectors, quantum dot lasers, and solar cells), as well as other applications (gas sensors and metallic nanopastes for power electronics packaging). Focuses on a new class of materials that exhibit fascinating physical properties and have many exciting device applications. Presents an overview of synthesis strategies and characterization techniques for various semiconductor nanocrystal and metal nanoparticles. Examines in detail the optical/optoelectronic properties, light emission properties, and electrical properties of semiconductor nanocrystals and metal nanoparticles. Reviews applications in nanoelectronic devices, optoelectronic devices, and photonic devices.
With the advancement in computing technologies, the need for power is also increasing. Approximately 3% of the total power consumption is spent by data centers and computing devices. This percentage will rise when more internet of things (IoT) devices are connected to the web. The handling of this data requires immense power. Energy Systems Design for Low-Power Computing disseminates the current research and the state-of-the-art technologies, topologies, standards, and techniques for the deployment of energy intelligence in edge computing, distributed computing, and centralized computing infrastructure. Covering topics such as electronic cooling, stochastic data analysis, and energy consumption, this premier reference source is an excellent resource for data center designers, VLSI designers, network developers, students and teachers of higher education, librarians, researchers, and academicians.
This volume includes highlights of the theories and experimental findings that underlie essential phenomena occurring in quantum-based devices and systems as well as the principles of operation of selected novel quantum-based electronic devices and systems. A number of the emerging approaches to creating new types of quantum-based electronic devices and systems are also discussed.