Download Free Single Cell Force Spectroscopy For Quantification Of Cellular Adhesion On Surfaces Book in PDF and EPUB Free Download. You can read online Single Cell Force Spectroscopy For Quantification Of Cellular Adhesion On Surfaces and write the review.

Summarizing the latest trends and the current state of this research field, this up-to-date book discusses in detail techniques to perform localized alterations on surfaces with great flexibility, including microfluidic probes, multifunctional nanopipettes and various surface patterning techniques, such as dip pen nanolithography. These techniques are also put in perspective in terms of applications and how they can be transformative of numerous (bio)chemical processes involving surfaces. The editors are from IBM Zurich, the pioneers and pacesetters in the field at the forefront of research in this new and rapidly expanding area.
This revised second edition is improved linguistically with multiple increases of the number of figures and the inclusion of several novel chapters such as actin filaments during matrix invasion, microtubuli during migration and matrix invasion, nuclear deformability during migration and matrix invasion, and the active role of the tumor stroma in regulating cell invasion.
In the book Microbial Biofilms: Importance and applications, eminent scientists provide an up-to-date review of the present and future trends on biofilm-related research. This book is divided with four subdivisions as biofilm fundamentals, applications, health aspects, and their control. Moreover, this book also provides a comprehensive account on microbial interactions in biofilms, pyocyanin, and extracellular DNA in facilitating Pseudomonas aeruginosa biofilm formation, atomic force microscopic studies of biofilms, and biofilms in beverage industry. The book comprises a total of 21 chapters from valued contributions from world leading experts in Australia, Bulgaria, Canada, China, Serbia, Germany, Italy, Japan, the United Kingdom, the Kingdom of Saudi Arabia, Republic of Korea, Mexico, Poland, Portugal, and Turkey. This book may be used as a text or reference for everyone interested in biofilms and their applications. It is also highly recommended for environmental microbiologists, soil scientists, medical microbiologists, bioremediation experts, and microbiologists working in biocorrosion, biofouling, biodegradation, water microbiology, quorum sensing, and many other related areas. Scientists in academia, research laboratories, and industry will also find it of interest.
Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair highlights the various important considerations that go into biomaterial development, both in terms of fundamentals and applications. After covering a general introduction to protein and cell interactions with biomaterials, the book discusses proteins in biomaterials that mimic the extracellular matrix (ECM). The properties, fabrication and application of peptide biomaterials and protein-based biomaterials are discussed in addition to in vivo and in vitro studies. This book is a valuable resource for researchers, scientists and advanced students interested in biomaterials science, chemistry, molecular biology and nanotechnology. - Presents an all-inclusive and authoritative coverage of the important role which protein and peptides play as biomaterials for tissue regeneration - Explores protein and peptides from the fundamentals, to processing and applications - Written by an international group of leading biomaterials researchers
J. Herbert Waite Like many graduate students before and after me I was There are so many species about which nothing is known, mesmerized by a proposition expressed years earlier by and the curse of not knowing is apathy. Krogh (1929) – namely that “for many problems there is Bioadhesion is the adaptation featured in this book, an animal on which it can be most conveniently studied”. and biology has many adhesive practitioners. Indeed, This opinion became known as the August Krogh Prin- every living organism is adhesively assembled in the ciple and remains much discussed to this day, particu- most exquisite way. Clearly, speci? c adhesion needs to larly among comparative physiologists (Krebs, 1975). be distinguished from the opportunistic variety. I think The words “problems” and “animal” are key because of speci? c adhesion as the adhesion between cells in the they highlight the two fundamental and complementary same tissue, whereas opportunistic adhesion might be the foci of biological research: (1) expertise about an animal adhesion between pathogenic microbes and the urinary (zoo-centric), which is mostly observational and (2) a tract, or between a slug and the garden path. If oppor- mechanistic analysis of some problem in the animal’s life nistic bioadhesion is our theme, then there are still many history or physiology (problem-centric), which is usually practitioners but the subset is somewhat more select than a hypothesis-driven investigation. before.
This book describes these exciting new developments, and presents experimental and computational findings that altogether describe the frontier of knowledge in cellular and biomolecular mechanics, and the biological implications, in health and disease. The book is written for bioengineers with interest in cellular mechanics, for biophysicists, biochemists, medical researchers and all other professionals with interest in how cells produce and respond to mechanical loads.
This comprehensive reference work details the latest developments in fluorescence imaging and related biological quantification. It explores the most recent techniques in this imaging technology through the utilization and incorporation of quantification analysis which makes this book unique. It also covers super resolution microscopy with the introduction of 3D imaging and high resolution fluorescence. Many of the chapter authors are world class experts in this medical imaging technology.
This volume explores label-free biosensors, advantageous in part because this technology bypasses the need of labels, reporters, and cell engineering, all of which are common to labeled techniques but may introduce artifacts in assay results. Addressing several fundamental and practical aspects as to how to implement label-free methods in the drug discovery process, this book covers a wide range of topics, including binding kinetics determination, fragment screening, antibody epitope mapping, protein-protein interaction profiling and screening, receptor pathway deconvolution, drug pharmacology profiling and screening, target identification, drug toxicity assessment, and physical phenotype profiling and diagnostics based on various cellular processes such as cell adhesion, migration, invasion, infection, and inflammation. As part of the Methods in Pharmacology and Toxicology series, chapters aim to provide key detail and implementation advice to aid with progress in the lab. Practical and thorough, Label-Free Biosensor Methods in Drug Discovery provides a new avenue for rapid access to a focused collection of highly regarded contributions in the field.
Red blood cells in humans—and most other mammals—have a tendency to form aggregates with a characteristic face-to-face morphology, similar to a stack of coins. Known as rouleaux, these aggregates are a normally occurring phenomenon and have a major impact on blood rheology. What is the underlying mechanism that produces this pattern? Does this really happen in blood circulation? And do these rouleaux formations have a useful function? The first book to offer a comprehensive review of the subject, Red Blood Cell Aggregation tackles these and other questions related to red blood cell (RBC) aggregates. The book covers basic, clinical, and physiological aspects of this important biophysical phenomenon and integrates these areas with concepts in bioengineering. It brings together state-of-the-art research on the determinants, mechanisms, and measurement and effects of RBC aggregation as well as on variations and comparative aspects. After an introductory overview, the book outlines factors and conditions that affect RBC aggregation. It presents the two hypotheses—the bridging model and the depletion model—that provide potential mechanisms for the adhesive forces that lead to the regular packing of the cells in rouleaux formations. The book also reviews the methods used to quantify RBC aggregation in vitro, focusing on their importance in clinical practice. Chapters discuss the effect of RBC aggregation on the in vitro rheology of blood as well as on tube flow. The book also looks at what happens in the circulation when red blood cells aggregate and examines variations due to physiological and pathophysiological challenges. The concluding chapter explores the formation of red blood cell aggregates in other mammals. Written by leading researchers in the field, this is an invaluable resource for basic science, medical, and clinical researchers; graduate students; and clinicians interested in mammalian red blood cells.
Das erste Handbuch, das Robotertechnik und Nanotechnologie verbindet, als Nachschlagewerk die Grundlagen zusammenfasst und neue Anwendungen in den Bereichen Halbleiter-Packaging, klinische Diagnose und Chirurgie vorstellt. Durchgängig mit aufregenden Aufnahmen auf Nanoebene.