Download Free Simulation Of Charge Transport In Organic Semiconductors Book in PDF and EPUB Free Download. You can read online Simulation Of Charge Transport In Organic Semiconductors and write the review.

Thin film organic semiconductors have applications in electronic devices such as transistors, light emitting diodes, and organic solar cells. The performance of such devices depends on the mobility of the charge carriers which is strongly affected by the morphology of the material. In this work, we perform Monte Carlo simulations to study charge transport in lattice models of homogeneous and heterogeneous materials. The model device consists of a layer of the material between two electrodes at different potentials. Charge carriers are injected from the electrodes and move by hopping under the influence of the electric field and Coulomb interactions. To model the effect of polymer chain connectivity on charge transport we include an energetic barrier to hopping between sites on different chains. We measure current-voltage (I-V) characteristics of model devices and determine the mobility of the charge carriers from the slope of the I-V curves in the ohmic regime. We validate our algorithms with simulations of simple devices consisting of two parallel layers of donor and acceptor materials between the electrodes. To study the effect of ordered domains in polymeric semiconductors we simulate charge transport in a recently developed lattice model for polymers that undergo an order-disorder transition. We find that ordering in the material leads to strong anisotropies with increased mobility for transport parallel to the ordered domains and reduced mobility for perpendicular transport.
To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals and single crystals. The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus realistic transfer integral distributions and their autocorrelations are obtained. In case of organic crystals two descriptions of charge transport, namely semi-classical dynamics (SCD) and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. In KMC one assumes that the wave function is localized on one molecule, while in SCD it is spread over a limited number of neighboring molecules. The results are compared amongst each other and, where available, with experimental data.
In the field of organic semiconductors researchers and manufacturers are faced with a wide range of potential molecules. This work presents concepts for simulation-based predictions of material characteristics starting from chemical stuctures. The focus lies on charge transport – be it in microscopic models of amorphous morphologies, lattice models or large-scale device models. An extensive introductory review, which also includes experimental techniques, makes this work interesting for a broad readership. Contents: Organic Semiconductor Devices Experimental Techniques Charge Dynamics at Dierent Scales Computational Methods Energetics and Dispersive Transport Correlated Energetic Landscapes Microscopic, Stochastic and Device Simulations Parametrization of Lattice Models Drift–Diusion with Microscopic Link
Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. Here we propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower than most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. In conclusion, much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs.
This volume presents the application of the Monte Carlo method to the simulation of semiconductor devices, reviewing the physics of transport in semiconductors, followed by an introduction to the physics of semiconductor devices.