Download Free Simulation Of Additive Manufacturing Using Meshfree Methods Book in PDF and EPUB Free Download. You can read online Simulation Of Additive Manufacturing Using Meshfree Methods and write the review.

This book provides a detailed instruction to virtually reproduce the processes of Additive Manufacturing on a computer. First, all mathematical equations needed to model these processes are presented. Due to their flexibility, meshfree methods represent optimal computational solution schemes to simulate Additive Manufacturing processes. On the other hand, these methods usually do not guarantee an accurate solution. For this reason, this monograph is dedicated in detail to the necessary criteria for computational solution schemes to provide accurate results. Several meshfree methods are examined with respect to these conditions. Two different 3D printing techniques are presented in detail. The results obtained from the simulation are investigated and compared with experimental data. This work is addressed to both scientists and professionals working in the field of development who are interested to learn the secrets behind meshfree methods or get into the modeling of Additive Manufacturing.
This book comprehensively introduces readers to Digital Twins, from the basic concepts, core technologies and technical architecture, to application scenarios and other aspects. Readers will gain a profound understanding of the emerging discipline of Digital Twins. Covering the latest and cutting-edge application technologies of Digital Twins in various fields, the book offers practitioners concrete problem-solving strategies. At the same time, it helps those working in Digital Twins-related fields to deepen their understanding of the industry and enhance their professional knowledge and skills. Given its scope, the book can also be used as teaching material or a reference book for teachers and students of product design, industrial design, design management, design marketing and related disciplines at colleges and universities. Covering a variety of groundbreaking Digital Twins technologies, it can also provide new directions for researchers.
Provides thorough coverage of essential concepts and state-of-the-art developments in the field Meshfree and Particle Methods is the first book of its kind to combine comprehensive, up-to-date information on the fundamental theories and applications of meshfree methods with systematic guidance on practical coding implementation. Broad in scope and content, this unique volume provides readers with the knowledge necessary to perform research and solve challenging problems in nearly all fields of science and engineering using meshfree computational techniques. The authors provide detailed descriptions of essential issues in meshfree methods, as well as specific techniques to address them, while discussing a wide range of subjects and use cases. Topics include approximations in meshfree methods, nonlinear meshfree methods, essential boundary condition enforcement, quadrature in meshfree methods, strong form collocation methods, and more. Throughout the book, topics are integrated with descriptions of computer implementation and an open-source code (with a dedicated chapter for users) to illustrate the connection between the formulations discussed in the text and their real-world implementation and application. This authoritative resource: Explains the fundamentals of meshfree methods, their constructions, and their unique capabilities as compared to traditional methods Features an overview of the open-source meshfree code RKPM2D, including code and numerical examples Describes all the variational concepts required to solve scientific and engineering problems using meshfree methods such as Nitsche’s method and the Lagrange multiplier method Includes comprehensive reviews of essential boundary condition enforcement, quadrature in meshfree methods, and nonlinear aspects of meshfree analysis Discusses other Galerkin meshfree methods, strong form meshfree methods, and their comparisons Meshfree and Particle Methods: Fundamentals and Applications is the perfect introduction to meshfree methods for upper-level students in advanced numerical analysis courses, and is an invaluable reference for professionals in mechanical, aerospace, civil, and structural engineering, and related fields, who want to understand and apply these concepts directly, or effectively use commercial and other production meshfree and particle codes in their work.
Additive Manufacturing Materials and Technologies discusses the recent developments and future possibilities in additive manufacturing. The book focuses on advanced technologies and materials, with chapters centered on shape memory materials, alloys and metals, polymers, ceramics, thermosets, biomaterials, and composites. Fiber-reinforced materials are covered as well, as are the life cycle and performance criteria of 3D printed materials. Other chapters look at the various applications of these materials and processing techniques, covering their use in the aerospace and automotive sectors, construction, bioengineering, and the pharmaceutical industry. Various additive manufacturing techniques such as electron beam melting, selective laser melting, laser sintered, fused deposition, and more are also studied. - Presents a comprehensive overview of recent advances in additive manufacturing technology and materials research and development - Outlines the processing methods, functionalization, mechanics, and applications of additive manufactured materials and technology - Summarizes lifecycles and performance parameters of 3D printed materials - Focuses on the types of shape memory materials and smart materials used in 3D printing in industrial applications and their applications
This book shares insights on post-processing techniques adopted to achieve precision-grade surfaces of additive manufactured metals including material characterization techniques and the identified material properties. Post-processes are discussed from support structure removal and heat treatment to the material removal processes including hybrid manufacturing. Also discussed are case studies on unique applications of additive manufactured metals as an exemplary of the considerations taken during post-processing design and selection. Addresses the critical aspect of post-processing for metal additive manufacturing Provides systematic introduction of pertinent materials Demonstrates post-process technique selection with the enhanced understanding of material characterization methods and evaluation Includes in-depth validation of ultra-precision machining technology Reviews precision fabrication of industrial-grade titanium alloys, steels, and aluminium alloys, with additive manufacturing technology The book is aimed at researchers, professionals, and graduate students in advanced manufacturing, additive manufacturing, machining, and materials processing.
This book sheds light on the development of the cold spray process in applications of additive manufacturing (AM) and repair/remanufacturing engineering. It covers the process fundamentals of different cold spray techniques, namely low pressure cold spray and high pressure cold spray process. Bonding mechanism and powder substrate interface are an important part of the book. The chapters present the recent developments in materials used in cold spraying for AM and various coating applications. The latest research in this area as well as possible avenues of future research are also highlighted as a way to encourage the researchers.
The volume collects several contributions to the INDAM workshop Mathematical Methods for Objects Reconstruction: from 3D Vision to 3D Printing held in Rome, February, 2021. The goal of the workshop was to discuss new methods and conceptual structures for managing these challenging problems. The chapters reflect this goal and the authors are academic researchers and some experts from industry working in the areas of 3D modeling, computer vision, 3D printing and/or developing new mathematical methods for these problems. The contributions present methodologies and challenges raised by the emergence of large-scale 3D reconstruction applications and low-cost 3D printers. The volume collects complementary knowledges from different areas of mathematics, computer science and engineering on research topics related to 3D printing, which are, so far, widely unexplored. Young researchers and future scientific leaders in the field of 3D data acquisition, 3D scene reconstruction, and 3D printing software development will find an excellent introduction to these problems and to the mathematical techniques necessary to solve them.
Innovative Lightweight and High Strength Alloys: Multiscale Integrated Processing, Experimental, and Modeling Techniques provides multiscale processing, experimental and modeling techniques overviews and perspectives that highlight current roadblocks to optimal design of new alloys alongside solutions. Critical microstructural, chemical and mechanical aspects are considered with techniques for significantly improving mechanical properties. Case studies, applications and hands-on techniques that can be put into immediate practice are included throughout. Sections cover processing techniques for various alloys, including aluminum, titanium, martensitic, austenitic, and others. Additive manufacturing of alloys is also covered, along with updates on mechanical quasi-static, chemically-based, and dynamic experimentation techniques, and more. The book concludes with a modeling section that features several chapters covering multiscale, microstructural, combinatorial computational, and machine learning modeling techniques. - Provides solutions for designing innovative and durable alloys - Demonstrates how to optimally combine alloys with other metallic and non-metallic material systems for longer life cycles and better durability in extreme environments and loading conditions - Outlines a variety of experimentation, characterization and modeling techniques that can be put into immediate practice
This book gathers the latest advances, innovations, and applications in the field of computational engineering, as presented by leading international researchers and engineers at the 29th International Conference on Computational & Experimental Engineering and Sciences (ICCES), held in Shenzhen, China on May 26-29, 2023. ICCES covers all aspects of applied sciences and engineering: theoretical, analytical, computational, and experimental studies and solutions of problems in the physical, chemical, biological, mechanical, electrical, and mathematical sciences. As such, the book discusses highly diverse topics, including composites; bioengineering & biomechanics; geotechnical engineering; offshore & arctic engineering; multi-scale & multi-physics fluid engineering; structural integrity & longevity; materials design & simulation; and computer modeling methods in engineering. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.