Download Free Simulating Spacecraft Systems Book in PDF and EPUB Free Download. You can read online Simulating Spacecraft Systems and write the review.

Satellite development worldwide has significantly changed within the last decade and has been accelerated and optimized by modern simulation tools. The classic method of developing and testing several models of a satellite and its subsystems with the aim to build a pre-flight and finally a flight model is being replaced more and more by a considerably faster and more inexpensive method. The new approach no longer includes functional test models on entire spacecraft level but a system simulation. Thus overall project runtimes can be shortened. But also significantly more complex systems can be managed and success oriented tests on integration and software level can be realized before the launch. Applying modern simulation infrastructures already during spacecraft development phase, enables the consistent functionality checking of all systems both in detail and concerning their interaction. Furthermore, they enable checks of the system's proper functionality, their reliability and safety / redundancy. But also analysis regarding aging and lifetime issues can be performed by simulation. Project-related simulations of operational scenarios, for example with remote sensing satellites, and the checking of different operational modes are of similar importance. On the whole, risk is reduced significantly and the satellite can be produced in a considerably more cost efficient way, with higher quality and in shorter periods of time. Therefore "Simulating Spacecraft Systems" - the title of the present book - is an important domain of modern system engineering, which meanwhile has successfully established a position in many other sectors of industry and research, too.
This book was sponsored by the U.S. Air Force Academy Space Mission Analysis and Design Program with support from program offices at the Air Force Space and Missile Systems Center, the National Reconnaissance Office, the U.S. Department of Transportation, and organizations within the National Aeronautics and Space Administration.
The capability modeling and simulation (M&S) supplies for managing systems complexity and investigating systems behaviors has made it a central activity in the development of new and existing systems. However, a handbook that provides established M&S practices has not been available. Until now. Modeling and Simulation-Based Systems Engineering Handbook details the M&S practices for supporting systems engineering in diverse domains. It discusses how you can identify systems engineering needs and adapt these practices to suit specific application domains, thus avoiding redefining practices from scratch. Although M&S practices are used and embedded within individual disciplines, they are often developed in isolation. However, they address recurring problems common to all disciplines. The editors of this book tackled the challenge by recruiting key representatives from several communities, harmonizing the different perspectives derived from individual backgrounds, and lining them up with the book’s vision. The result is a collection of M&S systems engineering examples that offer an initial means for cross-domain capitalization of the knowledge, methodologies, and technologies developed in several communities. These examples provide the pros and cons of the methods and techniques available, lessons learned, and pitfalls to avoid. As our society moves further in the information era, knowledge and M&S capabilities become key enablers for the engineering of complex systems and systems of systems. Therefore, knowledge and M&S methodologies and technologies become valuable output in an engineering activity, and their cross-domain capitalization is key to further advance the future practices in systems engineering. This book collates information across disciplines to provide you with the tools to more efficiently design and manage complex systems that achieve their goals.
This book provides recommendations for thermal and structural modelling of spacecraft structures for predicting thermoelastic responses. It touches upon the related aspects of the finite element and thermal lumped parameter method. A mix of theoretical and practical examples supports the modelling guidelines. Starting from the system needs of instruments of spacecraft, the reader is supported with the development of the practical requirements for the joint development of the thermal and structural models. It provides points of attention and suggestions to check the quality of the models. The temperature mapping problem, typical for spacecraft thermoelastic analysis, is addressed. The principles of various temperature mapping methods are presented. The prescribed average temperature method, co-developed by the authors, is discussed in detail together with its spin-off to provide high quality conductors for thermal models. The book concludes with the discussion of the application of uncertainty assessment methods. The thermoelastic analysis chain is computationally expensive. Therefore, the 2k+1 point estimate method of Rosenblueth is presented as an alternative for the Monte Carlo Simuation method, bringing stochastic uncertainty analysis in reach for large thermoelastic problems.
This book offers a unified presentation that does not discriminate between atmospheric and space flight. It demonstrates that the two disciplines have evolved from the same set of physical principles and introduces a broad range of critical concepts in an accessible, yet mathematically rigorous presentation. The book presents many MATLAB and Simulink-based numerical examples and real-world simulations. Replete with illustrations, end-of-chapter exercises, and selected solutions, the work is primarily useful as a textbook for advanced undergraduate and beginning graduate-level students.
A real-time computer-hardware simulation for the investigation of space station dynamics and control problems is described. The simulation utilizes full-scale control moment gyro (CMG) hardware mounted on a moving base simulator, a manual console, and a Control Data (CDC) 6600 digital computer to represent a space station and its control system. The digital computer software is programed in modular form by using separate subroutines or modules to represent the simulated spacecraft, onboard control computer, isolated experiment packages, and other disturbance or dynamics functions associated with space station operation. A complete functional and operational description of the major elements of the space station simulation is included.
NASA's Office of the Chief Technologist (OCT) has begun to rebuild the advanced space technology program in the agency with plans laid out in 14 draft technology roadmaps. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development and its technology base has been largely depleted. However, success in executing future NASA space missions will depend on advanced technology developments that should already be underway. Reaching out to involve the external technical community, the National Research Council (NRC) considered the 14 draft technology roadmaps prepared by OCT and ranked the top technical challenges and highest priority technologies that NASA should emphasize in the next 5 years. This report provides specific guidance and recommendations on how the effectiveness of the technology development program managed by OCT can be enhanced in the face of scarce resources.