Download Free Simulating Social Complexity Book in PDF and EPUB Free Download. You can read online Simulating Social Complexity and write the review.

This volume examines all aspects of using agent or individual-based simulation. This approach represents systems as individual elements having their own set of differing states and internal processes. The interactions between elements in the simulation represent interactions in the target systems. What makes this "social" is that it can represent an observed society. Social systems include all those systems where the components have individual agency but also interact with each other. This includes human societies and groups, but also increasingly socio-technical systems where the internet-based devices form the substrate for interaction. These systems are central to our lives, but are among the most complex known. This poses particular problems for those who wish to understand them. The complexity often makes analytic approaches infeasible but, on the other hand, natural language approaches are also inadequate for relating intricate cause and effect. This is why individual and agent-based computational approaches hold out the possibility of new and deeper understanding of such systems. This handbook marks the maturation of this new field. It brings together summaries of the best thinking and practices in this area from leading researchers in the field and constitutes a reference point for standards against which future methodological advances can be judged. This second edition adds new chapters on different modelling purposes and applying software engineering methods to simulation development. Revised existing content will keep the book up-to-date with recent developments. This volume will help those new to the field avoid "reinventing the wheel" each time, and give them a solid and wide grounding in the essential issues. It will also help those already in the field by providing accessible overviews of current thought. The material is divided into four sections: Introduction, Methodology, Mechanisms, and Applications. Each chapter starts with a very brief section called ‘Why read this chapter?’ followed by an abstract, which summarizes the content of the chapter. Each chapter also ends with a section on ‘Further Reading’. Whilst sometimes covering technical aspects, this second edition of Simulating Social Complexity is designed to be accessible to a wide range of researchers, including both those from the social sciences as well as those with a more formal background. It will be of use as a standard reference text in the field and also be suitable for graduate level courses.
Social systems are among the most complex known. This poses particular problems for those who wish to understand them. The complexity often makes analytic approaches infeasible and natural language approaches inadequate for relating intricate cause and effect. However, individual- and agent-based computational approaches hold out the possibility of new and deeper understanding of such systems. Simulating Social Complexity examines all aspects of using agent- or individual-based simulation. This approach represents systems as individual elements having each their own set of differing states and internal processes. The interactions between elements in the simulation represent interactions in the target systems. What makes these elements "social" is that they are usefully interpretable as interacting elements of an observed society. In this, the focus is on human society, but can be extended to include social animals or artificial agents where such work enhances our understanding of human society. The phenomena of interest then result (emerge) from the dynamics of the interaction of social actors in an essential way and are usually not easily simplifiable by, for example, considering only representative actors. The introduction of accessible agent-based modelling allows the representation of social complexity in a more natural and direct manner than previous techniques. In particular, it is no longer necessary to distort a model with the introduction of overly strong assumptions simply in order to obtain analytic tractability. This makes agent-based modelling relatively accessible to a range of scientists. The outcomes of such models can be displayed and animated in ways that also make them more interpretable by experts and stakeholders. This handbook is intended to help in the process of maturation of this new field. It brings together, through the collaborative effort of many leading researchers, summaries of the best thinking and practice in this area and constitutes a reference point for standards against which future methodological advances are judged. This book will help those entering into the field to avoid "reinventing the wheel" each time, but it will also help those already in the field by providing accessible overviews of current thought. The material is divided into four sections: Introductory, Methodology, Mechanisms, and Applications. Each chapter starts with a very brief section called 'Why read this chapter?' followed by an abstract, which summarizes the content of the chapter. Each chapter also ends with a section of 'Further Reading' briefly describing three to eight items that a newcomer might read next.
Social sciences -- Simulation methods. Social interaction -- Computer simulation. Social sciences -- Mathematical models. (publisher)
To fully understand not only the past, but also the trajectories, of human societies, we need a more dynamic view of human social systems. Agent-based modeling (ABM), which can create fine-scale models of behavior over time and space, may reveal important, general patterns of human activity. Agent-Based Modeling for Archaeology is the first ABM textbook designed for researchers studying the human past. Appropriate for scholars from archaeology, the digital humanities, and other social sciences, this book offers novices and more experienced ABM researchers a modular approach to learning ABM and using it effectively. Readers will find the necessary background, discussion of modeling techniques and traps, references, and algorithms to use ABM in their own work. They will also find engaging examples of how other scholars have applied ABM, ranging from the study of the intercontinental migration pathways of early hominins, to the weather–crop–population cycles of the American Southwest, to the trade networks of Ancient Rome. This textbook provides the foundations needed to simulate the complexity of past human societies, offering researchers a richer understanding of the past—and likely future—of our species.
What are the principles that keep our society together? This question is even more difficult to answer than the long-standing question, what are the forces that keep our world together. However, the social challenges of humanity in the 21st century ranging from the financial crises to the impacts of globalization, require us to make fast progress in our understanding of how society works, and how our future can be managed in a resilient and sustainable way. This book can present only a few very first steps towards this ambitious goal. However, based on simple models of social interactions, one can already gain some surprising insights into the social, ``macro-level'' outcomes and dynamics that is implied by individual, ``micro-level'' interactions. Depending on the nature of these interactions, they may imply the spontaneous formation of social conventions or the birth of social cooperation, but also their sudden breakdown. This can end in deadly crowd disasters or tragedies of the commons (such as financial crises or environmental destruction). Furthermore, we demonstrate that classical modeling approaches (such as representative agent models) do not provide a sufficient understanding of the self-organization in social systems resulting from individual interactions. The consideration of randomness, spatial or network interdependencies, and nonlinear feedback effects turns out to be crucial to get fundamental insights into how social patterns and dynamics emerge. Given the explanation of sometimes counter-intuitive phenomena resulting from these features and their combination, our evolutionary modeling approach appears to be powerful and insightful. The chapters of this book range from a discussion of the modeling strategy for socio-economic systems over experimental issues up the right way of doing agent-based modeling. We furthermore discuss applications ranging from pedestrian and crowd dynamics over opinion formation, coordination, and cooperation up to conflict, and also address the response to information, issues of systemic risks in society and economics, and new approaches to manage complexity in socio-economic systems. Selected parts of this book had been previously published in peer reviewed journals.
Economics and the social sciences are, in fact, the “hard” sciences, as Herbert Simon argued, because the complexity of the problems dealt with cannot simply be reduced to analytically solvable models or decomposed into separate subprocesses. Nevertheless, in recent years, the emerging interdisciplinary “sciences of complexity” have provided new methods and tools for tackling these problems, ranging from complex data analysis to sophisticated computer simulations. In particular, advanced methods developed in the natural sciences have recently also been applied to social and economic problems.The twenty-one chapters of this book reflect this modern development from various modeling perspectives (such as agent-based models, evolutionary game theory, reinforcement learning and neural network techniques, time series analysis, non-equilibrium macroscopic dynamics) and for a broad range of socio-economic applications (market dynamics, technological evolution, spatial dynamics and economic growth, decision processes, and agent societies). They jointly demonstrate a shift of perspective in economics and the social sciences that is allowing a new outlook in this field to emerge.
The underlying idea and motive for the book is that the notion of complexity may humanize the social sciences, may conceive the complex human being as more human, and turn reality as assumed in our doing social science into a more complex, that is a richer reality for all. The main focus of this book is on new thinking in complexity, with complexity to be taken as derived from the Latin word complexus: ‘that which is interwoven.’ The trans-disciplinary approach advocated here will be trans-disciplinary in two ways: firstly, by going beyond the separate disciplines within the fields of both natural sciences and social sciences, and, secondly, by going beyond the separate cultures of the natural sciences and of the social sciences and humanities.
In this book experts from quite different fields present simulations of social phenomena: economists, sociologists, political scientists, psychologists, cognitive scientists, organisational scientists, decision scientists, geographers, computer scientists, AI and AL scientists, mathematicians and statisticians. They simulate markets, organisations, economic dynamics, coalition formation, the emergence of cooperation and exchange, bargaining, decision making, learning, and adaptation. The history, problems, and perspectives of simulating social phenomena are explicitly discussed.
The explosive growth in data, computational power, and social media creates new opportunities for innovating the processes and solutions of Information and communications technology (ICT) based policy-making and research. To take advantage of these developments in the digital world, new approaches, concepts, instruments and methods are needed to navigate the societal and computational complexity. This requires extensive interdisciplinary knowledge of public administration, policy analyses, information systems, complex systems and computer science. This book provides the foundation for this new interdisciplinary field, in which various traditional disciplines are blending. Both policy makers, executors and those in charge of policy implementations acknowledge that ICT is becoming more important and is changing the policy-making process, resulting in a next generation policy-making based on ICT support. Web 2.0 and even Web 3.0 point to the specific applications of social networks, semantically enriched and linked data, whereas policy-making has also to do with the use of the vast amount of data, predictions and forecasts, and improving the outcomes of policy-making, which is confronted with an increasing complexity and uncertainty of the outcomes. The field of policy-making is changing and driven by developments like open data, computational methods for processing data, opining mining, simulation and visualization of rich data sets, all combined with public engagement, social media and participatory tools.
This book explores how complexity science and social simulation can be used to improve and inform policy-making in both research and innovation. Beginning with an introduction to conceptual definitions of complexity science and social simulation, the book demonstrates the validity of the underlying integrated research framework used throughout. It is then divided into two parts, with the first investigating the effects and impacts of policy making on the structure, composition and outputs of research and innovation networks using the agent-based SKIN platform (Simulating Knowledge Dynamics in Innovation Networks, http://cress.soc.surrey.ac.uk/SKIN/). The second half of the book discusses a research initiative funded by the Irish government focusing on innovation policy simulation for economic recovery. This consists of empirical research on Irish research and innovation networks, and SKIN-based simulations of technology transfer issues and the commercialization of research in areas with high potential for innovation and economic growth. The book concludes with reflections on the maturity and utility of an approach combining complexity science and social simulation for research and innovation policy. Joining Complexity Science and Social Simulation for Innovation Policy will be of particular interest to scientists concerned with innovation and complex systems, including economists, sociologists, and complexity researchers, as well as students and practitioners, such as innovation policymakers and innovation business managers.