Download Free Simulating Heart Valve Mechanical Behavior For Planning Surgical Repair Book in PDF and EPUB Free Download. You can read online Simulating Heart Valve Mechanical Behavior For Planning Surgical Repair and write the review.

This volume comprises the latest developments in both fundamental science and patient-specific applications, discussing topics such as: cellular mechanics, injury biomechanics, biomechanics of the heart and vascular system, algorithms of computational biomechanics for medical image analysis, and both patient-specific fluid dynamics and solid mechanics simulations. With contributions from researchers world-wide, Computational Biomechanics for Medicine: Measurments, Models, and Predictions provides an opportunity for specialists in the field to present their latest methodologies and advancements.
This book constitutes the refereed proceedings of the 7th International Conference on Functional Imaging and Modeling of the Heart, held in London, UK, in June 2013. The 58 revised full papers were carefully reviewed and selected from numerous initial submissions. The focus of the papers is on following topics: image driven modeling, biophysical modeling, image analysis, biophysical modeling, cardiac imaging, parameter estimation, modeling methods, and biomedical engineering.
This text presents a general introduction to soft tissue biomechanics. One of its primary goals is to introduce basic analytical, experimental and computational methods. In doing so, it enables readers to gain a relatively complete understanding of the biomechanics of the heart and vasculature.
This book constitutes the refereed proceedings of the 12th International Conference on Functional Imaging and Modeling of the Heart, held in Lyon, France, in June 2023. The 72 full papers were carefully reviewed and selected from 80 submissions. The focus of the papers is on following topics: increased imaging resolutions, data explosion, sophistication of computational models and advent of AI frameworks, while new imaging modalities have emerged (e.g. combined PET-MRI, Spectral CT).
This book provides information on the aortic valve. Written in a comprehensive style, it emphasizes the principles behind the development of artificial valves. It covers the principles of valve geometry, tissue structure and function relationships, valve dynamics, fluid dynamics, mechanical stresses, echocardiographic images, mechanisms of valve sounds, valvular pathology, and design and performance of bioprosthetic valves. It enhances our understanding of angiographic and echocardiographic images and calcific stenosis, and will be of value in the development of better prostheses. The Aortic Valve is the ideal text for biomedical engineers and a unique resource for teaching interdisciplinary approaches to medical and engineering students. This work is also an indispensible source for cardiac surgeons, pathologists, cardiologists, and manufacturers of prosthetic valves.
This book presents cutting-edge research and developments in the field of Biomedical Engineering. It describes both fundamental and clinically-oriented findings, highlighting advantages and challenges of innovative methods and technologies, such as artificial intelligence, wearable devices and neuroengineering, important issues related to health technology management and human factors in health, and new findings in biomechanical analysis and modeling. Gathering the proceedings of the XXVII Brazilian Congress on Biomedical Engineering, CBEB 2020, held on October 26-30, 2020, in Vitória, Brazil, and promoted by the Brazilian Society of Biomedical Engineering – SBEB, this book gives emphasis to research and developments carried out by Brazilian scientists, institutions and professionals. It offers an extensive overview on new trends and clinical implementation of technologies, and it is intended to foster communication and collaboration between medical scientists, engineers, and researchers inside and outside the country.
Written by physicians and surgeons, imaging specialists, and medical technology engineers, and edited by Dr. Evan M. Zahn of the renowned Cedars-Sinai Heart Institute, this concise, focused volume covers must-know information in this new and exciting field. Covering everything from the evolution of 3D modeling in cardiac disease to the various roles of 3D modeling in cardiology to cardiac holography and 3D bioprinting, 3-Dimensional Modeling in Cardiovascular Disease is a one-stop resource for physicians, cardiologists, radiologists, and engineers who work with patients, support care providers, and perform research. - Provides history and context for the use of 3D printing in cardiology settings, discusses how to use it to plan and evaluate treatment, explains how it can be used as an education resource, and explores its effectiveness with medical interventions. - Presents specific uses for 3D modeling of the heart, examines whether it improves outcomes, and explores 3D bioprinting. - Consolidates today's available information and guidance into a single, convenient resource.
Robotic surgery is currently devoid of adequate didactic material necessary to facilitate daily application in cardiothoracic surgical practice. This book represents the definitive atlas that will lead both the practicing and new cardiothoracic surgeons in these methods. It will define the operative pathway of each procedure, from beginning to end, for surgeons who wish to be a complete robotic cardiac surgeon and include hints and procedural pitfalls derived from the experiences of chapter contributors. The book will be illustrated with high quality illustrations and color photographs from surgical operations where appropriate. Leading surgeons have contributed to the book and provided sample illustrations for their respective chapters. Anesthetic and cardiopulmonary support preparation for each operation will be included and selected references will be provided to emphasize evidence-based outcomes.
3D Printing Applications in Cardiovascular Medicine addresses the rapidly growing field of additive fabrication within the medical field, in particular, focusing on cardiovascular medicine. To date, 3D printing of hearts and vascular systems has been largely reserved to anatomic reconstruction with no additional functionalities. However, 3D printing allows for functional, physiologic and bio-engineering of products to enhance diagnosis and treatment of cardiovascular disease. This book contains the state-of-the-art technologies and studies that demonstrate the utility of 3D printing for these purposes. - Addresses the novel technology and cardiac and vascular application of 3D printing - Features case studies and tips for applying 3D technology into clinical practice - Includes an accompanying website that provides 3D examples from cardiovascular clinicians, imagers, computer science and engineering experts